摘要: 我在读《Elementary Methods in Number Theory》,发现的错误记录如下(我要记录任何有价值的信息,书上的错误在我看来,属于有价值的信息).以后若发现,会不断增加.1.Page 36,exercise 1.5.7 $2^{2^{5}}-1$中的减号应当改为加号.2.Pag... 阅读全文
posted @ 2012-12-01 19:21 叶卢庆 阅读(136) 评论(0) 推荐(0)
摘要: 我在读《Elementary Methods in Number Theory》,发现的错误记录如下(我要记录任何有价值的信息,书上的错误在我看来,属于有价值的信息).以后若发现,会不断增加.1.Page 36,exercise 1.5.7 $2^{2^{5}}-1$中的减号应当改为加号.2.Pag... 阅读全文
posted @ 2012-12-01 19:21 叶卢庆 阅读(177) 评论(0) 推荐(0)
摘要: Let $k$ be a positive integer,prove that if $2^k+1$ is prime,then$k=2^n$.Proof:If $\forall n$,$k\neq 2^n$,then there exists a prime number$p\neq 2$ su... 阅读全文
posted @ 2012-12-01 19:02 叶卢庆 阅读(99) 评论(0) 推荐(0)
摘要: Let $k$ be a positive integer,prove that if $2^k+1$ is prime,then$k=2^n$.Proof:If $\forall n$,$k\neq 2^n$,then there exists a prime number$p\neq 2$ su... 阅读全文
posted @ 2012-12-01 19:02 叶卢庆 阅读(152) 评论(0) 推荐(0)
摘要: Let $a$ and $n$ be positive integers.Prove that $a^n-1$ is prime onlyif $a=2$ and $n=p$ is prime.Proof:\begin{equation} a^n-1^n=(a-1)(a^{n-1}+a^{n-2}... 阅读全文
posted @ 2012-12-01 18:48 叶卢庆 阅读(104) 评论(0) 推荐(0)
摘要: Let $a$ and $n$ be positive integers.Prove that $a^n-1$ is prime onlyif $a=2$ and $n=p$ is prime.Proof:\begin{equation} a^n-1^n=(a-1)(a^{n-1}+a^{n-2}... 阅读全文
posted @ 2012-12-01 18:48 叶卢庆 阅读(120) 评论(0) 推荐(0)
摘要: Let $N=210$.Prove that $N-p$ is prime for every prime $p$ such that$\frac{N}{2}<p<N$.Find a prime number $q<\frac{N}{2}$ such that $N-q$is composite.P... 阅读全文
posted @ 2012-12-01 17:26 叶卢庆 阅读(117) 评论(0) 推荐(0)
摘要: Let $N=210$.Prove that $N-p$ is prime for every prime $p$ such that$\frac{N}{2}<p<N$.Find a prime number $q<\frac{N}{2}$ such that $N-q$is composite.P... 阅读全文
posted @ 2012-12-01 17:26 叶卢庆 阅读(128) 评论(0) 推荐(0)
摘要: 自从大一自学了一点C++后,好久没玩C++了,忘了不少.毕竟算一门手艺(只有数学,物理这种大道式的学科才能算一门学问,C++这种根据计算机学家的脾气不断改变的编程语言在我眼里就是一个玩具),说不定将来快饿死的时候还能用来谋生.因此我决定以此博文重启C++学习之路.今天一道数论题叫我用Eratosth... 阅读全文
posted @ 2012-12-01 15:43 叶卢庆 阅读(185) 评论(0) 推荐(0)
摘要: 自从大一自学了一点C++后,好久没玩C++了,忘了不少.毕竟算一门手艺(只有数学,物理这种大道式的学科才能算一门学问,C++这种根据计算机学家的脾气不断改变的编程语言在我眼里就是一个玩具),说不定将来快饿死的时候还能用来谋生.因此我决定以此博文重启C++学习之路.今天一道数论题叫我用Eratosth... 阅读全文
posted @ 2012-12-01 15:43 叶卢庆 阅读(218) 评论(0) 推荐(0)
摘要: Let $H=\{1,5,9,\cdots\}$ be the arithmetic progression of all positiveintegers of the form $4k+1$.Elements of $H$ are called Hilbertnumbers.Show that ... 阅读全文
posted @ 2012-12-01 03:24 叶卢庆 阅读(183) 评论(0) 推荐(0)
摘要: Let $H=\{1,5,9,\cdots\}$ be the arithmetic progression of all positiveintegers of the form $4k+1$.Elements of $H$ are called Hilbertnumbers.Show that ... 阅读全文
posted @ 2012-12-01 03:24 叶卢庆 阅读(147) 评论(0) 推荐(0)
摘要: For $n\geq 2$,the rational number \begin{equation}\label{eq:343242} 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \end{equation}is not an integer.... 阅读全文
posted @ 2012-12-01 01:36 叶卢庆 阅读(154) 评论(0) 推荐(0)
摘要: For $n\geq 2$,the rational number \begin{equation}\label{eq:343242} 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n} \end{equation}is not an integer.... 阅读全文
posted @ 2012-12-01 01:36 叶卢庆 阅读(153) 评论(0) 推荐(0)