摘要: 当$|x|<1$时,$\log (1+x)$的泰勒展开.解:是\begin{equation} \label{eq:11.13} x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\cdots\end{equation}易得当$|x|<1$时,\beg... 阅读全文
posted @ 2012-11-12 23:51 叶卢庆 阅读(784) 评论(0) 推荐(0)
摘要: 当$|x|<1$时,$\log (1+x)$的泰勒展开.解:是\begin{equation} \label{eq:11.13} x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\cdots\end{equation}易得当$|x|<1$时,\beg... 阅读全文
posted @ 2012-11-12 23:51 叶卢庆 阅读(2581) 评论(0) 推荐(0)
摘要: In order to study the convergence of $(1+\frac{1}{n})^n$ to$e$,consider the sequences \begin{equation} a_n=(1+\frac{1}{n})^n~~~\mbox{and}~~~b_n=(... 阅读全文
posted @ 2012-11-12 20:18 叶卢庆 阅读(126) 评论(0) 推荐(0)
摘要: In order to study the convergence of $(1+\frac{1}{n})^n$ to$e$,consider the sequences \begin{equation} a_n=(1+\frac{1}{n})^n~~~\mbox{and}~~~b_n=(... 阅读全文
posted @ 2012-11-12 20:18 叶卢庆 阅读(100) 评论(0) 推荐(0)
摘要: (Bernoulli's inequality;Jac.Bernoulli 1689,see 1744,Opera,p.380;Barrow1670,see 1860,Works,Lectio VII,XIII,p.224).By induction on $n$,provethat1.\begin... 阅读全文
posted @ 2012-11-12 15:04 叶卢庆 阅读(143) 评论(0) 推荐(0)
摘要: (Bernoulli's inequality;Jac.Bernoulli 1689,see 1744,Opera,p.380;Barrow1670,see 1860,Works,Lectio VII,XIII,p.224).By induction on $n$,provethat1.\begin... 阅读全文
posted @ 2012-11-12 15:04 叶卢庆 阅读(102) 评论(0) 推荐(0)
摘要: By using $2\cdot 4^3-5^3=3$,obtain the formula\begin{equation} \label{eq:12.38} \sqrt[3]{2}=\frac{5}{4}(1+\frac{1}{1\cdot 125}-\frac{2}{1\cdot 2\... 阅读全文
posted @ 2012-11-12 13:12 叶卢庆 阅读(143) 评论(0) 推荐(0)
摘要: By using $2\cdot 4^3-5^3=3$,obtain the formula\begin{equation} \label{eq:12.38} \sqrt[3]{2}=\frac{5}{4}(1+\frac{1}{1\cdot 125}-\frac{2}{1\cdot 2\... 阅读全文
posted @ 2012-11-12 13:12 叶卢庆 阅读(116) 评论(0) 推荐(0)
摘要: Verify the following formula(Euler 1755,Opera vol.X,p.280) by using$50=2\cdot 5^2=7^2+1$: \begin{equation} \label{eq:11.27} \sqrt{2}=\frac{7}{... 阅读全文
posted @ 2012-11-12 02:01 叶卢庆 阅读(112) 评论(0) 推荐(0)
摘要: Verify the following formula(Euler 1755,Opera vol.X,p.280) by using$50=2\cdot 5^2=7^2+1$: \begin{equation} \label{eq:11.27} \sqrt{2}=\frac{7}{... 阅读全文
posted @ 2012-11-12 02:01 叶卢庆 阅读(167) 评论(0) 推荐(0)