摘要:
当$|x|<1$时,$\log (1+x)$的泰勒展开.解:是\begin{equation} \label{eq:11.13} x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\cdots\end{equation}易得当$|x|<1$时,\beg... 阅读全文
posted @ 2012-11-12 23:51
叶卢庆
阅读(784)
评论(0)
推荐(0)
摘要:
当$|x|<1$时,$\log (1+x)$的泰勒展开.解:是\begin{equation} \label{eq:11.13} x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+\cdots\end{equation}易得当$|x|<1$时,\beg... 阅读全文
posted @ 2012-11-12 23:51
叶卢庆
阅读(2581)
评论(0)
推荐(0)
摘要:
In order to study the convergence of $(1+\frac{1}{n})^n$ to$e$,consider the sequences \begin{equation} a_n=(1+\frac{1}{n})^n~~~\mbox{and}~~~b_n=(... 阅读全文
posted @ 2012-11-12 20:18
叶卢庆
阅读(126)
评论(0)
推荐(0)
摘要:
In order to study the convergence of $(1+\frac{1}{n})^n$ to$e$,consider the sequences \begin{equation} a_n=(1+\frac{1}{n})^n~~~\mbox{and}~~~b_n=(... 阅读全文
posted @ 2012-11-12 20:18
叶卢庆
阅读(100)
评论(0)
推荐(0)
摘要:
(Bernoulli's inequality;Jac.Bernoulli 1689,see 1744,Opera,p.380;Barrow1670,see 1860,Works,Lectio VII,XIII,p.224).By induction on $n$,provethat1.\begin... 阅读全文
posted @ 2012-11-12 15:04
叶卢庆
阅读(143)
评论(0)
推荐(0)
摘要:
(Bernoulli's inequality;Jac.Bernoulli 1689,see 1744,Opera,p.380;Barrow1670,see 1860,Works,Lectio VII,XIII,p.224).By induction on $n$,provethat1.\begin... 阅读全文
posted @ 2012-11-12 15:04
叶卢庆
阅读(102)
评论(0)
推荐(0)
摘要:
By using $2\cdot 4^3-5^3=3$,obtain the formula\begin{equation} \label{eq:12.38} \sqrt[3]{2}=\frac{5}{4}(1+\frac{1}{1\cdot 125}-\frac{2}{1\cdot 2\... 阅读全文
posted @ 2012-11-12 13:12
叶卢庆
阅读(143)
评论(0)
推荐(0)
摘要:
By using $2\cdot 4^3-5^3=3$,obtain the formula\begin{equation} \label{eq:12.38} \sqrt[3]{2}=\frac{5}{4}(1+\frac{1}{1\cdot 125}-\frac{2}{1\cdot 2\... 阅读全文
posted @ 2012-11-12 13:12
叶卢庆
阅读(116)
评论(0)
推荐(0)
摘要:
Verify the following formula(Euler 1755,Opera vol.X,p.280) by using$50=2\cdot 5^2=7^2+1$: \begin{equation} \label{eq:11.27} \sqrt{2}=\frac{7}{... 阅读全文
posted @ 2012-11-12 02:01
叶卢庆
阅读(112)
评论(0)
推荐(0)
摘要:
Verify the following formula(Euler 1755,Opera vol.X,p.280) by using$50=2\cdot 5^2=7^2+1$: \begin{equation} \label{eq:11.27} \sqrt{2}=\frac{7}{... 阅读全文
posted @ 2012-11-12 02:01
叶卢庆
阅读(167)
评论(0)
推荐(0)

浙公网安备 33010602011771号