基于模拟退火算法的多个城市变速环游算法设计及其可视化——python实现
说明






1.4实验结果例子
城市坐标点为随机数随机产生,结果如图2、3、4所示。



参考文献:
[1] Steinbrunn M , Moerkotte G , Kemper A . Heuristic and randomized optimization for the join ordering problem[J]. Vldb Journal, 1997, 6(3):191-208.
代码
"""
假设有N个城市编号为1~N,分布在二维平面上,其坐标分别为(Xi, Yi)。城市间的距离按照欧式距离计算。现任选一个城市出发,不重复、不遗漏地访问
其他所有城市,最终返回源点,形成一条封闭路径,与旅行商问题类似。现假设在任两个城市间均按直线行进,可以选择步行或骑车,后者的速度是前者的k倍,
在本题中令k=2。若封闭路径中记为p0-p1-p2-...pN,其中pi是第i步访问的城市编号,初始位置p0和结束位置pN相同。相邻两个城市(pi到pi+1)的访问
仅能选择步行或骑车之一进行,在途中不能变更交通方式。在到达目标城市之后不作停留,继续向下一个城市出发,但出发时允许变更交通方式。此外,城市间
骑车的总次数不能超过N的一定比例,本题为w=50%,即上述路径中的N段旅程,仅能有不超过wN段骑车。
根据上述条件,设计算法实现用时最短的环游路线,并给出路线上相邻城市间采用哪种交通方式。如难以找到最短路线,可以寻找次优解。
要求:给出问题的数学规范描述和解题思路,给出算法的规范描述,完成算法实现与性能分析(理论分析或实测分析均可)。
"""
import random
import sys
import copy
import math
import matplotlib.pyplot as plt
# 使能够正常显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
random.seed(10)
city_number = 50 # 城市个数
walking_speed = 2
"""定义参数"""
parameter_dict = {
"city_number": city_number,
"city_x_list": random.sample(range(1, 10000), city_number),
"city_y_list": random.sample(range(1, 10000), city_number),
"walking_speed": walking_speed,
"cycling_speed": 2 * walking_speed,
"cycling_number_threshold": int(city_number / 2),
"satisfying_value": sys.maxsize, # 满意值
"break_T": 1 # 模拟退火算法跳出温度
}
print(f"parameter_dict:{parameter_dict}")
"""end"""
class DrawPoint(object):
"""画点的类"""
def __init__(self):
self.fontsize = 14
self.scatter_s = 50
self.connect_point_color = 'r'
self.plot_marker = '>'
self.plt_obj = plt
def draw_points(self, point_x_axis_list: list, point_y_axis_list: list, xlabel: str, ylabel: str, title: str):
"""把点显示出来"""
self.plt_obj.scatter(point_x_axis_list, point_y_axis_list, s=self.scatter_s)
# # 设置图表标题并给坐标轴加上标签
self.plt_obj.title(title, fontsize=self.fontsize)
self.plt_obj.xlabel(xlabel, fontsize=self.fontsize)
self.plt_obj.ylabel(ylabel, fontsize=self.fontsize)
def connect_points(self, point_x_axis_list: list, point_y_axis_list: list):
"""按顺序连接各点"""
self.plt_obj.plot(point_x_axis_list, point_y_axis_list, color=self.connect_point_color, marker=self.plot_marker)
def show_text(self, point_x_axis_list, point_y_axis_list, best_route, best_route_detail):
"""把方案方式显示到点上"""
for i in range(len(best_route)):
plt.text(point_x_axis_list[i], point_y_axis_list[i], best_route_detail[f"{best_route[i]}"])
def plt_show(self):
self.plt_obj.show()
draw_obj = DrawPoint()
draw_obj.draw_points(point_x_axis_list=parameter_dict["city_x_list"], point_y_axis_list=parameter_dict["city_y_list"],
xlabel="x", ylabel="y",
title=f"各城市坐标点显示,城市个数{city_number}")
# draw_obj.connect_points(point_x_axis_list=parameter_dict["city_x_list"],
# point_y_axis_list=parameter_dict["city_y_list"])
draw_obj.plt_show()
class SimulatedAnnealingTSP(object):
"""模拟退火算法解tsp问题"""
def __init__(self, parameter_dict):
"""跳出条件"""
self.satisfying_value = parameter_dict["satisfying_value"]
self.break_T = parameter_dict["break_T"]
"""tsp属性"""
self.walking_speed = parameter_dict["walking_speed"] # 步行速度
self.cycling_speed = parameter_dict["cycling_speed"] # 骑车速度
self.cycling_number_threshold = parameter_dict["cycling_number_threshold"] # 骑车总次数
self.city_x_list = parameter_dict["city_x_list"] # 城市x坐标
self.city_y_list = parameter_dict["city_y_list"] # 城市y坐标
self.best_route_x_list = None # 找到最优方案时重新排序下城市坐标
self.best_route_y_list = None
self.city_number = parameter_dict["city_number"]
self.distance_matrix = [[0 for col in range(self.city_number)] for raw in
range(self.city_number)] # 都初始化为0,用二维列表表示吧
self.cur_route = None # 用来存当前环游方案
self.best_route = None # 用来存储最好的环游方案
self.best_route_detail = {} # 骑车和步行的细节
self.cur_total_distance = 0 # 当前方案总距离
self.best_total_distance = 0 # 最好的方案总距离
self.cur_time_consume = sys.maxsize # 当前方案耗时
self.min_time_consume = sys.maxsize # 最好的方案耗时
"""模拟退火属性"""
self.T = 200.0 # 温度
self.af = 0.95 # af退火率
self.balance = 500 # 平衡次数
def get_distance_matrix(self):
"""得到距离矩阵,距离用欧氏距离"""
for i in range(self.city_number): # 行
for j in range(self.city_number): # 列 先计算第一行中,城市1和城市1的距离,城市1和城市2的距离,城市3和城市3的距离......
self.distance_matrix[i][j] = pow(
pow(self.city_x_list[i] - self.city_x_list[j], 2) + pow(self.city_y_list[i] - self.city_y_list[j],
2), 0.5)
if self.distance_matrix[i][j] == 0: # 当为0时是重叠或者起点,这个时候没有意义,设置为sys.maxsize
self.distance_matrix[i][j] = sys.maxsize
def calculate_distance(self, route):
"""根据传入的方案,计算当前方案的总距离"""
temp_total_distance = 0.0 # 每次计算当前总距离都要清0
for i in range(self.city_number - 1):
temp_total_distance += self.distance_matrix[route[i]][route[i + 1]] # 路径方案中城市1和城市2的距离+城市2和城市3+......
temp_total_distance += self.distance_matrix[route[self.city_number - 1]][route[0]] # 再+终点城市和起点城市的距离,就齐了
return temp_total_distance
# 得到新解
def get_new_route(self, route):
"""获得新的方案"""
new_route = copy.copy(route) # 复制一个一模一样的列表
if random.random() < 0.5: # 一半的概率两两交换,一半的概率三变换
"""两两交换"""
# 随机选2个城市,都是整数
two_cities = random.sample(range(0, self.city_number), 2)
city1 = two_cities[0]
city2 = two_cities[1]
# 交换
temp_value = new_route[city1]
new_route[city1] = new_route[city2]
new_route[city2] = temp_value
else:
"""三三交换 城市1——>城市3, 城市2——>城市1, 城市3——>城市2"""
# 随机选3个城市
three_cities = random.sample(range(0, self.city_number), 3)
three_cities.sort()
city1 = three_cities[0]
city2 = three_cities[1]
city3 = three_cities[2]
# 交换
city1_temp = new_route[city1]
new_route[city1] = new_route[city2]
new_route[city2] = new_route[city3]
new_route[city3] = city1_temp
return new_route
def calculate_time_consume(self, route):
"""根据传入的方案,计算方案的总时间损耗, 路径最长的骑车,剩下走路"""
walking_distance = 0
cycling_distance = 0
each_two_cities_distance = [] # 每2个城市之前的距离
# 各个城市之前的距离
for i in range(self.city_number - 1):
each_two_cities_distance.append(self.distance_matrix[route[i]][route[i + 1]])
each_two_cities_distance.append(self.distance_matrix[route[self.city_number - 1]][route[0]])
# 计算步行和骑车总距离
each_two_cities_distance.sort(reverse=True) # 从大到小排序
for i in range(len(each_two_cities_distance)):
if i + 1 <= self.cycling_number_threshold: # 距离长的就骑车
cycling_distance += each_two_cities_distance[i]
else:
walking_distance += each_two_cities_distance[i]
# 计算步行和骑车总时间
walking_time = walking_distance / self.walking_speed
cycling_time = cycling_distance / self.cycling_speed
# 消耗的总时间
time_consume = walking_time + cycling_time
return time_consume
def get_best_route_detail(self, route):
"""根据传入的方案,获得骑车和步行的细节"""
self.best_route_detail = {}
each_two_cities_distance = []
each_two_cities_distance_and_indexs = {} # 每2个城市之前的距离和索引
# 各个城市之前的距离
for i in range(self.city_number - 1):
each_two_cities_distance.append(int(self.distance_matrix[route[i]][route[i + 1]]))
each_two_cities_distance_and_indexs[f"{int(self.distance_matrix[route[i]][route[i + 1]])}"] = i
each_two_cities_distance.append(int(self.distance_matrix[route[self.city_number - 1]][route[0]]))
each_two_cities_distance_and_indexs[
f"{int(self.distance_matrix[route[self.city_number - 1]][route[0]])}"] = self.city_number - 1
# 计算步行和骑车总距离
each_two_cities_distance.sort(reverse=True) # 从大到小排序
for i in range(len(each_two_cities_distance)):
# 获取此时距离的route索引
route_index = each_two_cities_distance_and_indexs[f"{each_two_cities_distance[i]}"]
if i + 1 <= self.cycling_number_threshold: # 距离长的就骑车
self.best_route_detail[f"{route_index}"] = "骑车"
else:
self.best_route_detail[f"{route_index}"] = "步行"
# print(f"self.best_route_detail:{self.best_route_detail}")
for i in range(len(self.best_route)):
how_to_arrice = self.best_route_detail[f"{self.best_route[i]}"]
if i + 1 < self.city_number:
print(f"城市{self.best_route[i]}到城市{self.best_route[i + 1]}{how_to_arrice} ")
else:
print(f"城市{self.best_route[i]}到城市{self.best_route[0]}{how_to_arrice} ")
def run(self):
# 根据欧式距离得到距离矩阵
self.get_distance_matrix()
# 初始化方案
self.cur_route = random.sample(range(0, city_number), city_number) # 随机选择列表序列中元素完成初始化路径,用索引来表示城市
# 计算初始化方案的距离和时间
self.cur_total_distance = self.calculate_distance(self.cur_route)
self.cur_time_consume = self.calculate_time_consume(self.cur_route)
# 初始方案和最优值初始化
self.best_route = self.cur_route
self.best_total_distance = self.cur_total_distance
self.min_time_consume = self.cur_time_consume
while True:
"""迭代次数"""
for j in range(self.balance):
new_route = self.get_new_route(self.cur_route) # 获取新方案
new_time_consume = self.calculate_time_consume(new_route) # 计算新方案的总耗时
if new_time_consume <= self.cur_time_consume: # 新方案耗时更小,也就是更好
self.cur_route = new_route # 接受新解
self.cur_time_consume = new_time_consume
if new_time_consume < self.min_time_consume: # 如果新方案比最好的方案还要好,新解为最优解
self.best_route = new_route
self.min_time_consume = new_time_consume
elif new_time_consume > self.cur_time_consume: # 新方案耗时更大,也就是比当前方案要差了,那就以一点概率接受这个更差的解
p = math.exp(-(new_time_consume - self.cur_time_consume) / self.T)
if random.uniform(0, 1) < p:
self.cur_route = new_route
self.cur_time_consume = new_time_consume
self.T = self.T * self.af # 温度下降
"""跳出条件, 达到满意的解或者温度直接跳出"""
if self.best_total_distance > self.satisfying_value or self.T < self.break_T:
break
print(f"最佳方案self.best_route为:{self.best_route}")
for i in self.best_route:
print(f"城市{i}————", end=" ")
print(f"\n最短消耗时间为self.min_time_consume:{self.min_time_consume}")
# 根据最新方案索引重新排序x和y列表
self.best_route_x_list = [self.city_x_list[i] for i in self.best_route]
self.best_route_x_list.append(self.best_route_x_list[0]) # 要把初始点再加上去,就能回到初始点了
self.best_route_y_list = [self.city_y_list[i] for i in self.best_route]
self.best_route_y_list.append(self.best_route_y_list[0]) # 要把初始点再加上去,就能回到初始点了
print(f"self.best_route_x_list:{self.best_route_x_list}")
print(f"self.best_route_y_list:{self.best_route_y_list}")
# 获得骑车和步行细节信息
self.get_best_route_detail(self.best_route)
SimulatedAnnealingTSP_obj = SimulatedAnnealingTSP(parameter_dict=parameter_dict)
SimulatedAnnealingTSP_obj.run()
draw_obj_tsp = DrawPoint()
draw_obj_tsp.draw_points(point_x_axis_list=parameter_dict["city_x_list"],
point_y_axis_list=parameter_dict["city_y_list"],
xlabel="x", ylabel="y",
title=f"变速环游方案,城市个数{city_number}")
draw_obj_tsp.connect_points(point_x_axis_list=SimulatedAnnealingTSP_obj.best_route_x_list,
point_y_axis_list=SimulatedAnnealingTSP_obj.best_route_y_list)
draw_obj_tsp.show_text(point_x_axis_list=SimulatedAnnealingTSP_obj.best_route_x_list,
point_y_axis_list=SimulatedAnnealingTSP_obj.best_route_y_list,
best_route=SimulatedAnnealingTSP_obj.best_route,
best_route_detail=SimulatedAnnealingTSP_obj.best_route_detail)
draw_obj_tsp.plt_show()
本文来自博客园,作者:JaxonYe,转载请注明原文链接:https://www.cnblogs.com/yechangxin/articles/17029159.html
侵权必究

浙公网安备 33010602011771号