线段树分治
维护问题有这个特征:数据在 \([l, r]\) 时刻出现。
常见的是对时间建线段树。具体做法是遍历整颗线段树,到达每个节点时执行相应的操作,然后继续向下递归,到达叶子节点时统计贡献,回溯时撤销操作即可。
考虑什么情况是二分图:充要条件是不存在奇环,那么就可以维护一个可撤销并查集(用栈)维护即可。
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 4e5 + 100;
int n, m, k, dep[N], fa[N], top, ans[N];
vector<pair<int, int> > g[N];
struct Node {
int x, y, high;
} st[N];
void insert(int p, int l, int r, int ql, int qr, pair<int, int> x) {
if (ql <= l && qr >= r) {
g[p].push_back(x);
return ;
}
int mid = (l + r) >> 1;
if (ql <= mid) {
insert(p << 1, l, mid, ql, qr, x);
}
if (qr > mid) {
insert(p << 1 | 1, mid + 1, r, ql, qr, x);
}
}
int getfa(int x) {
return x == fa[x] ? x : getfa(fa[x]);
}
void merge(int x, int y) {
x = getfa(x);
y = getfa(y);
if (dep[x] > dep[y]) {
swap(x, y);
}
st[++top] = {x, y, dep[y]};
fa[x] = y;
dep[y] += (dep[x] == dep[y]);
}
void solve(int p, int l, int r) {
bool flag = 0;
int now = top;
for (auto v : g[p]) {
merge(v.first, v.second + n);
merge(v.second, v.first + n);
if (getfa(v.first) == getfa(v.second)) {
flag = 1;
break;
}
}
if (!flag) {
if (l == r) {
ans[l] = 1;
} else {
int mid = (l + r) >> 1;
solve(p << 1, l, mid);
solve(p << 1 | 1, mid + 1, r);
}
}
while (top > now) {
Node t = st[top--];
fa[t.x] = t.x;
dep[t.y] = t.high;
}
}
signed main() {
cin >> n >> m >> k;
for (int i = 1; i <= 2 * n; i++) {
fa[i] = i;
}
for (int i = 1, x, y, l, r; i <= m; i++) {
cin >> x >> y >> l >> r;
insert(1, 1, k, l + 1, r, {x, y});
}
solve(1, 1, k);
for (int i = 1; i <= k; i++) {
cout << (ans[i] ? "Yes\n" : "No\n");
}
return 0;
}
考虑数 \(x\) 在什么样的情况下会成为 \(mex\):\(1\sim \text{x} - 1\) 出现,但是 \(x\) 不出现,那我们就可以对每一个 \(w_i\) 维护线段树:
insert(1, 0, mx, 0, w[i] - 1, i);
insert(1, 0, mx, w[i] + 1, mx, i);
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 4e6 + 100;
int n, m, siz[N], fa[N], top, a[N], b[N], w[N];
vector<int> g[N];
struct Node {
int x, y, siz;
} st[N];
void insert(int p, int l, int r, int ql, int qr, int x) {
if (ql > r || qr < l) {
return ;
}
if (ql <= l && qr >= r) {
g[p].push_back(x);
return ;
}
int mid = (l + r) >> 1;
insert(p << 1, l, mid, ql, qr, x);
insert(p << 1 | 1, mid + 1, r, ql, qr, x);
}
int getfa(int x) {
return x == fa[x] ? x : getfa(fa[x]);
}
void merge(int x, int y) {
x = getfa(x);
y = getfa(y);
if (x == y) {
return ;
}
if (siz[x] > siz[y]) {
swap(x, y);
}
st[++top] = {x, y, siz[y]};
fa[x] = y;
siz[y] += siz[x];
}
void solve(int p, int l, int r) {
int now = top;
for (int i : g[p]) {
merge(a[i], b[i]);
}
// cout << "(p, l, r) = (" << p << ", " << l << ", " << r << ")\n";
if (l == r) {
// cout << "siz = " << siz[getfa(1)] << '\n';
if (siz[getfa(1)] == n) {
cout << l << '\n';
exit(0);
}
} else {
int mid = (l + r) >> 1;
solve(p << 1, l, mid);
solve(p << 1 | 1, mid + 1, r);
}
while (top > now) {
Node t = st[top--];
fa[t.x] = t.x;
siz[t.y] = t.siz;
}
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0), cout.tie(0);
// freopen("1.in", "r", stdin);
cin >> n >> m;
int mx = 0, mn = 1e9;
for (int i = 1; i < N; i++) {
fa[i] = i, siz[i] = 1;
}
for (int i = 1; i <= m; i++) {
cin >> a[i] >> b[i] >> w[i];
mx = max(mx, w[i]);
mn = min(mn, w[i]);
}
mx++;
if (mn > 0) {
cout << "0\n";
return 0;
}
for (int i = 1; i <= m; i++) {
insert(1, 0, mx, 0, w[i] - 1, i);
insert(1, 0, mx, w[i] + 1, mx, i);
}
solve(1, 0, mx);
return 0;
}

浙公网安备 33010602011771号