#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 10;
int n;
int w[N][N];
int f[N][N][N];//f[i1, j1, i2, j2]
//当i1 + j1 == i2 + j2时两点才可能重合
//所以用k表示i和j的和优化掉一维
int main()
{
cin.tie(0);
cin >> n;
int a, b, c;
while (cin >> a >> b >> c, a || b || c) w[a][b] = c;
for (int k = 2; k <= n + n; k++)//k = i1 + j1 = i2 + j2 从(1,1)点开始
for (int i1 = 1; i1 <= n; i1++)
for (int i2 = 1; i2 <= n; i2++)
{
int j1 = k - i1, j2 = k - i2;
if(j1 >= 1 && j1 <= n && j2 >= 1 && j2 <= n)
{
int t = w[i1][j1];
if (i1 != i2)//当i1 == i2时,j1 = k - i1, j2 = k - i2 = k - i1,此时两点重合
t += w[i2][j2];
f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][i1 - 1][i2 - 1] + t);//都从上来
f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][i1 - 1][i2] + t);//第一条从上来,第二条从左来
f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][i1][i2 - 1] + t);//第二条从上来,第一条从左来
f[k][i1][i2] = max(f[k][i1][i2], f[k - 1][i1][i2] + t);//都从左来
}
}
cout << f[n + n][n][n] << endl;
return 0;
}