在大语言模型(LLM)主导的生成式 AI 浪潮中,检索增强生成(Retrieval-Augmented Generation,RAG)凭借 “外部知识检索 + 模型生成” 的模式,处理了 LLM “知识过时”“幻觉输出” 等关键问题,成为企业落地 AI 应用的核心方案。而支撑 RAG 建立 “精准检索” 的底层技术,正是Embedding(嵌入)技术。本文将从技巧本质、工作原理、在 RAG 中的应用流程,到技术挑战与演进方向,全面解析这一 “连接文本与机器理解” 的关键技术。

图片

Embedding 技术?就是一、什么

一种将非结构化材料(如文本、图片、音频)转化为结构化 “数字向量”(Vector) 的技术。这些向量就像数据的 “数字身份证”,不仅能被计算机快速处理,还能通过向量间的 “距离”(如余弦距离、欧氏距离)衡量原始数据的 “语义相似度”—— 距离越近,代表两个数据的含义越相似。就是简单来说,Embedding 技术

图片
在这里插入图片描述

1.1 为什么需要 Embedding?

人类能轻松理解 “猫” 和 “猫咪” 是相近概念,“苹果(水果)” 和 “苹果(公司)” 是不同含义,但计算机无法直接理解文字的语义。例如,直接将 “猫” 和 “狗” 用二进制 “01”“10” 表示时,计算机只能识别 “编码不同”,却无法判断 “两者都是哺乳动物” 这一语义关联。

Embedding 科技的核心价值,就是为文字赋予 “语义层面的数字表达”。比如:

(1)“猫” 的 Embedding 向量可能是:[0.21, 0.85, -0.12, 0.33, …, 0.67](假设维度为 768)

(2)“猫咪” 的 Embedding 向量可能是:[0.23, 0.82, -0.11, 0.35, …, 0.69]

(3)“狗” 的 Embedding 向量可能是:[0.78, 0.15, -0.09, 0.42, …, 0.21]

通过计算向量距离会发现:“猫” 与 “猫咪” 的余弦距离接近 0(相似度极高),而 “猫” 与 “狗” 的距离明显更大(相似度较低)—— 这正是机器理解语义的关键。

二、Embedding 技术工作原理

Embedding 模型并非单一结构,而是经历了 “词嵌入模型(如 Word2Vec)→ 上下文词嵌入模型(如 BERT)→ 句子嵌入模型(如 Sentence-BERT)” 的演进。不同架构的核心差异在于 “是否能捕捉上下文语义”,这直接决定了 Embedding 向量的语义表达能力。

2.1 三代模型架构对比

在这里插入图片描述

举个直观例子

输入句子 “我用苹果手机查苹果的价格”,不同模型的输出差异如下:

(1)Word2Vec:两个 “苹果” 的向量完全相同([0.32, 0.51, -0.17, …]),无法区分 “公司” 和 “水果” 含义;

(2)BERT:第一个 “苹果”(修饰手机)的向量为[0.45, 0.62, -0.21, …],第二个 “苹果”(指水果)的向量为[0.28, 0.48, -0.15, …],但需对句子中所有词向量取平均才能得到句子向量,计算成本高;

(3)Sentence-BERT:直接输出整个句子的向量[0.39, 0.55, -0.19, …],且能隐含 “第一个苹果指公司,第二个指水果” 的上下文关联,速度比 BERT 快 100 倍以上,完美适配 RAG 的批量向量生成需求。

2.2 核心架构:Transformer

当前主流的 Sentence-BERT、OpenAI Embedding 模型,均基于Transformer编码器(Encoder)构建,其核心是 “自注意力机制(Self-Attention)”—— 让模型在处理每个词时,都能 “看到” 句子中其他词的信息,从而理解语义关联。

我们以 “如何用 Python 读取 Excel 文档” 这句话为例,拆解自注意力机制的工作过程:

1.词的 “注意力权重” 计算

模型会为每个词(如 “Python”)计算与其他词(“用”“读取”“Excel”“文件”)的 “注意力权重”,权重越高代表关联性越强。例如:

(1)“Python” 与 “读取” 的权重为 0.82(强关联,源于 Python 是实现读取动作的工具);

(2)“Python” 与 “如何” 的权重为 0.15(弱关联,“如何” 是疑问词,与软件无关)。

2.加权融合上下文信息

每个词的向量会融合 “其他词向量 × 注意力权重” 的结果。例如,“Python” 的最终向量 =(“读取” 向量 ×0.82)+(“Excel” 向量 ×0.75)+(“如何” 向量 ×0.15)+ … ,从而让 “Python” 的向量隐含 “用于读取 Excel 文件” 的上下文含义。

3.多层堆叠强化理解

Transformer 编码器通常含有 6-12 层(如 BERT-base 有 12 层),每一层都会重复 “计算注意力权重→融合上下文” 的过程。例如,第一层可能只捕捉 “Python” 与 “读取” 的直接关联,而第三层会进一步理解 “Python 读取 Excel” 是 “解决文件处理问题” 的整体逻辑,层数越多,模型对复杂语义的理解越深刻。

2.3 模型训练

Embedding 向量并非人工定义,而是由专门的Embedding 模型(如 BERT、Sentence-BERT、OpenAI Embedding 等)通过大规模数据训练生成。其核心流程可分为 “模型训练” 和 “向量生成” 两步。

Embedding 模型的训练本质是 “教会模型识别语义相似性”。以最常用的Sentence-BERT(SBERT)为例,训练过程就像 “老师教学生辨词”:

(1)给模型 “喂” 数据:输入大量文本对,标注 “相似” 或 “不相似”(如 “喝奶茶” 和 “喝珍珠奶茶” 标为相似,“喝奶茶” 和 “骑自行车” 标为不相似);

(2)模型 “学习” 规律:模型通过调整内部参数,让 “相似文本对” 的向量距离变小,“不相似文本对” 的距离变大;

(3)考核与优化:凭借 “损失函数” 计算模型预测结果与标注的差距,反复调整参数,直到模型能稳定区分语义相似度。

训练完成后,模型就具备了 “输入任意文本,输出对应 Embedding 向量” 的能力。

2.4 向量生成流程

当我们需要为一段文本生成 Embedding 向量时,模型会遵循以下标准化流程:

图片

举个具体例子:输入文本 “如何用 Python 读取 Excel 文件?”

(1)预处理:分词为 “如何 / 用 / Python / 读取 / Excel / 文件 /?”,并将每个词转为基础向量;

(2)模型编码:Transformer 层分析 “Python” 与 “读取 Excel” 的关联,生成包含上下文信息的临时向量;

(3)后处理:对临时向量取平均,得到长度为 768 的向量,并归一化;

(4)输出:最终得到该问题的 Embedding 向量,用于后续检索。

三、Embedding 技术在 RAG 中的应用

RAG 的核心逻辑是 “先检索相关知识,再结合知识生成回答”,而 Embedding 技术贯穿了 RAG 的 “知识存储” 和 “知识检索” 两大关键环节,形成完整的技术闭环。

3.1 RAG 中的 Embedding 技术架构

“检索”环节的绝对核心。就是RAG的流程允许简化为“检索” + “生成”。而Embedding

图片

1.预处理与索引(Indexing)

(1)将外部知识库(如公司文档、网页)切分成较小的文本块(Chunks)。

(2)使用Embedding模型将每一个文本块转换为一个向量。

(3)将所有向量存储到专门的向量数据库(Vector Database)中,如Pinecone、Chroma、Weaviate等。这些数据库针对高维向量的快速相似性搜索进行了优化。

2.检索(Retrieval)

(1)当用户提出一个问题(Query)时,使用同一个Embedding模型将这个问题也转换为一个向量(Query Vector)。

(2)在向量数据库中,进行最近邻搜索(Nearest Neighbor Search),寻找与Query Vector最相似的那些文本块向量。相似度通常用余弦相似度(Cosine Similarity)来衡量,它关注的是两个向量在方向上的差异,而非绝对距离。

(3)找到最相关的K个文本块(Context),作为补充信息。

3.增强生成(Augmented Generation)

(1)将用户原始问题(Query)和检索到的相关文本(Context)一起组合成一个详细的提示(Prompt),交给大语言模型(如GPT-4)。

(2)LLM基于该包括了“事实依据”的Prompt来生成最终答案,从而避免了幻觉(Hallucination),提高了准确性和可信度。

四、Embedding 科技的挑战

尽管 Embedding 技术已成为 RAG 的基础,但在实际落地中仍面临三大核心挑战,同时也在迅速演进以解决这些问题。

4.1 三大核心挑战

1.长文本 Embedding 的 “细节丢失” 问题

当前主流 Embedding 模型(如 OpenAI text-embedding-3-small)对文本长度有限制(通常支持 1024/2048 tokens),超过长度的文本需要拆分。但拆分可能导致 “上下文断裂”—— 例如,某段关于 “产品保修条款” 的文本被拆分为两部分,单独生成的向量可能丢失 “保修期限与故障类型关联” 的关键信息,导致检索偏差。

2.领域适配性不足

通用 Embedding 模型(如 Sentence-BERT)在日常文本中表现优异,但在医疗、法律、化工等专业领域效果下降。例如,“肺癌” 在通用模型中可能与 “肺炎” 相似度较高,但在医疗领域,“非小细胞肺癌” 与 “小细胞肺癌” 的差异需要更精准的向量区分 —— 通用模型无法捕捉这类专业语义。

3.向量计算的 “效率与精度平衡”

当向量数据库中的向量数量达到百万、千万级时,“全量计算相似度” 会变得非常缓慢(如千万级向量全量计算需几秒甚至分钟级)。为提升速度,通常会利用 “近似最近邻(ANN)” 算法(如 FAISS、HNSW),但这会牺牲部分精度 —— 可能导致 “最相关的知识未被检索到”。

4.2 技术演进方向

针对上述挑战,Embedding 技术正朝着三个方向高效发展:

1.长文本 Embedding 模型:如 Anthropic 的 Claude Embedding、阿里云的 Qwen-Embedding,支持 4096 甚至 8192 tokens 的长文本,减少拆分带来的上下文丢失;

2.领域专用模型微调:通过 “通用模型 + 领域数据微调” 的方式,提升专业场景的语义识别能力。例如,用 10 万条医疗文献微调 Sentence-BERT,得到 “医疗专用 Embedding 模型”;

3.向量数据库与模型协同优化:向量数据库(如 Milvus 2.4)通过 “动态索引”“混合检索(关键词 + 向量)” 工艺,在保证毫秒级检索速度的同时,提升精度,平衡效率与效果。

总结

如果说 RAG 是 “让 AI 拥有外部知识库” 的桥梁,那么 Embedding 技术就是这座桥梁的 “地基”—— 没有它,非结构化知识无法被机器检索,RAG 的 “精准回答” 也无从谈起。从技术本质来看,Embedding 不仅是 “文本转向量” 的工具,更是机器理解人类语言、连接物理世界与数字世界的 “通用语言”。随着长文本模型、领域专用模型的持续演进,Embedding 工艺将进一步提升 RAG 的检索精度与适用范围,推动 AI 在企业客服、医疗诊断、法律咨询等专业领域的深度落地。

最后

选择AI大模型就是选择未来!最近两年,大家都可以看到AI的发展有多快,我国超10亿参数的大模型,在短短一年之内,已经超过了100个,现在还在不断的发掘中,时代在瞬息万变,我们又为何不给自己多一个选择,多一个出路,多一个可能呢?

与其在传统行业里停滞不前,不如尝试一下新兴行业,而AI大模型恰恰是这两年的大风口,整体AI领域2025年预计缺口1000万人,人才需求急为紧迫!

由于文章篇幅有限,在这里我就不一一向大家展示了,学习AI大模型是一项系统工程,需要时间和持续的努力。但随着技术的发展和在线资源的丰富,零基础的小白也有很好的机会逐步学习和掌握。

【2025最新】AI大模型全套学习籽料(可白嫖):LLM面试题+AI大模型学习路线+大模型PDF书籍+640套AI大模型报告等等,从入门到进阶再到精通,超全面存下吧!

获取方式:有需要的小伙伴,可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
包括:AI大模型学习路线、LLM面试宝典、0基础教学视频、大模型PDF书籍/笔记、大模型实战案例合集、AI产品经理合集等等

在这里插入图片描述
大模型学习之路,道阻且长,但只要你坚持下去,一定会有收获。本学习路线图为你献出了学习大模型的全面指南,从入门到进阶,涵盖理论到应用。在这里插入图片描述
L1阶段:启航篇|大语言模型的基础认知与核心原理

L2阶段:攻坚篇|高频场景:RAG认知与项目实践

L3阶段:跃迀篇|Agent智能体架构设计

L4阶段:精进篇|模型微调与私有化部署

L5阶段:专题篇|特训集:A2A与MCP综合应用 追踪行业热点(全新升级板块)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
AI大模型全套学习资料【获取方式】

在这里插入图片描述

posted on 2025-10-20 17:42  ycfenxi  阅读(3)  评论(0)    收藏  举报