Popcount Sum 2 Yukicoder - 2206
思路
考虑每一位对于答案的影响,先枚举多少个 1,然后考虑每一位可以产生多少个贡献,那么我们就可以得到答案为:\(\sum_{i=0}^{m}\sum_{i=0}^{n}C_{n}^{i}2^i\) 把 \(2^{i}\) 提取出来就是 \(2^{n+1}-1\) 然后你就会发现剩下的是一个二次项系数的一部分,然后你就可以用莫队维护这个,不过你还可以用分块快速求解,这里给出分块预处理后在线查值,思路太短了,放个图凑数:
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int MaxN = 2e5 + 10, mod = 998244353, B = 447;
struct Block {
vector<int> p2;
vector<vector<int>> d;
int f[MaxN], v[MaxN], n;
int qpow(int a, int b, int res = 1) {
for (int i = 1; i <= b; i <<= 1) {
(b & i) && (res = res * a % mod);
a = a * a % mod;
}
return res;
}
void init() {
f[0] = 1;
for (int i = 1; i < MaxN; ++i) {
f[i] = f[i - 1] * i % mod;
}
v[MaxN - 1] = qpow(f[MaxN - 1], mod - 2);
for (int i = MaxN - 2; i >= 0; --i) {
v[i] = v[i + 1] * (i + 1) % mod;
}
}
int g(int x, int k) {
int m = k * B;
return x <= m ? p2[x] : d[k][x - m] * v[m] % mod;
}
Block(int _n) : n(_n) {
p2.resize(n + 1), p2[0] = 1, init();
for (int i = 1; i <= n; ++i) {
p2[i] = (p2[i - 1] * 2) % mod;
}
int K = (n + B - 1) / B + 2;
d.resize(K);
for (int k = 0; k < K; ++k) {
int m = k * B;
if (m > n) continue;
d[k].resize(n - m + 1);
d[k][0] = p2[m] * f[m] % mod;
for (int i = 0; i < n - m; ++i) {
d[k][i + 1] = ((d[k][i] * 2 % mod - f[i + m] * v[i] % mod) % mod + mod) % mod;
}
}
}
int query(int x, int m, int a = 0, int res = 0) {
m = min(m, x + 1);
if (m <= 0) return 0;
if (m + m > x + 1) return (p2[x] - query(x, x + 1 - m) + mod) % mod;
m--, a = m / B;
if (m <= a * B + B / 2) {
for (int i = a * B + 1; i <= m; ++i) {
res = (res + v[i] * v[x - i] % mod) % mod;
}
return (g(x, a) + res * f[x] % mod) % mod;
}
for (int i = m + 1; i <= min((a + 1) * B, x); ++i) {
res = (res + v[i] * v[x - i] % mod) % mod;
}
return (g(x, a + 1) - res * f[x] % mod + mod) % mod;
}
};
int t, n, m;
signed main() {
Block B(2e5 + 1);
for (cin >> t; t; t--) {
cin >> n >> m;
cout << ((B.qpow(2, n) - 1) % mod + mod) % mod * B.query(n - 1, m) % mod << '\n';
}
return 0;
}