一、数组
int[] arr = new int[10];
for (int i = 0; i < arr.length; i++) {
arr[i] = i;
}
int[] arr2 = {1, 2, 3, 4, 5};
System.out.println("arr:" + Arrays.toString(arr));
System.out.println("arr2:" + Arrays.toString(arr2));
|
优点:效率最高的存储和随机访问对象引用序列的方式;可以保存基本类型
缺点:数组对象大小固定,且在其生命周期不可改变;不能支持更复杂的方式来存储对象------------java容器类
二、集合容器类库简化图

三、容器基本类型
1. Collection的功能方法:
boolean add(Object o) 添加对象到集合;
boolean remove(Object o) 删除指定的对象;
int size() 返回当前集合中元素的数量;
boolean contains(Object o) 查找集合中是否有指定的对象;
boolean isEmpty() 判断集合是否为空;
Iterator iterator() 返回一个迭代器;
boolean containsAll(Collection c) 查找集合中是否有集合 C 中的元素;
boolean addAll(Collection c) 将集合 C 中所有的元素添加给该集合;
void clear() 删除集合中所有元素;
void removeAll(Collection c) 从集合中删除 C 集合中也有的元素;
void retainAll(Collection c) 从集合中删除集合 C 中不包含的元素。
2. 常用的Collection
-
List
List 是有序的 Collection,使用此接口能够精确的控制每个元素插入的位置。List 允许有相同的元素和null。
1.1)list接口提供的主要方法:
1.1.1)void add(int index,Object element) 在指定位置上添加一个对象;
1.1.2)boolean addAll(int index,Collection c) 将集合 C 的元素添加到指定的位置;
1.1.3)Object get(int index) 返回 List 中指定位置的元素;
1.1.4) int indexOf(Object o) 返回第一个出现元素 O 的位置;
1.1.5)Object removeint(int index) 删除指定位置的元素;
1.1.6)Object set(int index,Object element) 用元素 element 取代位置 index 上的元素, 返回被取代的元素。
1.2)常用类:
1.2.1)ArrayList:
- ArrayList是基于数组实现的List类,它封装了一个动态的增长的、允许再分配的Object[]数组。list添加元素时,会先判断是否需要扩容(一般是扩容到1.5倍),然后调用System.arraycopy(original, 0, copy, 0, Math.min(original.length, newLength))方法进行数组的复制。
/**
* The array buffer into which the elements of the ArrayList are stored.
* The capacity of the ArrayList is the length of this array buffer.
*/
private transient Object[] elementData;
/**
* The size of the ArrayList (the number of elements it contains).
*
* @serial
*/
private int size;
/**
* Constructs an empty list with an initial capacity of ten.
*/
public ArrayList() {
this(10);
}
/**
* Appends the specified element to the end of this list.
*
* @param e element to be appended to this list
* @return <tt>true</tt> (as specified by {@link Collection#add})
*/
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
/**
* Appends all of the elements in the specified collection to the end of
* this list, in the order that they are returned by the
* specified collection's Iterator. The behavior of this operation is
* undefined if the specified collection is modified while the operation
* is in progress. (This implies that the behavior of this call is
* undefined if the specified collection is this list, and this
* list is nonempty.)
*
* @param c collection containing elements to be added to this list
* @return <tt>true</tt> if this list changed as a result of the call
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
private void ensureCapacityInternal(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
/**
* Increases the capacity to ensure that it can hold at least the
* number of elements specified by the minimum capacity argument.
*
* @param minCapacity the desired minimum capacity
*/
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
|
思考:MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8 ?
- 删除某个元素:
List<String> list = new ArrayList<String>();
list.add("a");
list.add("b");
list.add("c");
list.add("d");
list.add("b");
// index删除
for (int i = 0; i < list.size(); i++) {
if ("b".equals(list.get(i))) {
list.remove(i);
i--;
}
}
System.out.println("--list after remove index----:" + list);
// 集合remove删除元素
for (String s : list) {
if ("c".equals(s)) {
list.remove(s);
}
}
System.out.println("---list after remove object---:" + list);
//迭代器删除元素
Iterator iterator = list.iterator();
while (iterator.hasNext()) {
if (iterator.next().equals("c")) {
iterator.remove();
}
}
|
index删除元素:直接copy数组元素,并数组大小减1
public E remove(int index) {
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // Let gc do its work
return oldValue;
}
|
集合删除元素:modCount增加1,expectedCount没有变化
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // Let gc do its work
}
|
/**
* An optimized version of AbstractList.Itr
*/
private class Itr implements Iterator<E> {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != size;
}
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
|
- java 8 提供的一种遍历list方式:
list.forEach(new Consumer<Object>() {
@Override
public void accept(Object item) {
System.out.println(item);
}
});
|
- ArrayList非线程安全的:
final List<String> list = new ArrayList<String>();
list.add("a");
list.add("b");
list.add("c");
list.add("d");
list.add("b");
new Thread(new Runnable() {
public void run() {
for (String s : list) {
System.out.println("遍历元素:" + s);
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}).start();
new Thread(new Runnable() {
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
list.remove(4);
System.out.println("删除元素");
}
}).start();
|
final List<String> list = new ArrayList<String>();
list.add("a");
list.add("b");
list.add("c");
list.add("d");
list.add("b");
new Thread(new Runnable() {
public void run() {
synchronized (list) {
for (String s : list) {
System.out.println("遍历元素:" + s);
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}).start();
new Thread(new Runnable() {
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
list.remove(4);
System.out.println("删除元素");
}
}).start();
Thread.sleep(5000);
System.out.println("list:" + list);
|
final List<String> list = new ArrayList<String>();
list.add("a");
list.add("b");
list.add("c");
list.add("d");
list.add("b");
new Thread(new Runnable() {
public void run() {
synchronized (list) {
for (String s : list) {
System.out.println("遍历元素:" + s);
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}).start();
new Thread(new Runnable() {
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
synchronized (list) {
list.remove(4);
System.out.println("删除元素");
}
}
}).start();
Thread.sleep(5000);
System.out.println("list:" + list);
|
关键:
1)当一个线程访问object的一个synchronized(this)同步代码块时,另一个线程仍然可以访问该object中的非synchronized(this)同步代码块;
2)当一个线程访问object的一个synchronized(this)同步代码块时,其他线程对object中所有其它synchronized(this)同步代码块的访问将被阻塞
1.2.2)LinkedList:
实现List接口,能对它进行队列操作,即可以根据索引来随机访问集合中的元素。同时它还实现Deque接口,即能将LinkedList当作双端队列使用。自然也可以被当作"栈来使用"
LinkedList实际上是通过双向链表去实现的。
transient int size = 0;
/**
* Pointer to first node.
* Invariant: (first == null && last == null) ||
* (first.prev == null && first.item != null)
*/
transient Node<E> first;
/**
* Pointer to last node.
* Invariant: (first == null && last == null) ||
* (last.next == null && last.item != null)
*/
transient Node<E> last;
/**
* Constructs an empty list.
*/
public LinkedList() {
}
/**
* Links e as first element.
*/
private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f);
first = newNode;
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}
/**
* Links e as last element.
*/
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
/**
* Inserts element e before non-null Node succ.
*/
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
final Node<E> pred = succ.prev;
final Node<E> newNode = new Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}
/**
* Unlinks non-null first node f.
*/
private E unlinkFirst(Node<E> f) {
// assert f == first && f != null;
final E element = f.item;
final Node<E> next = f.next;
f.item = null;
f.next = null; // help GC
first = next;
if (next == null)
last = null;
else
next.prev = null;
size--;
modCount++;
return element;
}
/**
* Unlinks non-null last node l.
*/
private E unlinkLast(Node<E> l) {
// assert l == last && l != null;
final E element = l.item;
final Node<E> prev = l.prev;
l.item = null;
l.prev = null; // help GC
last = prev;
if (prev == null)
first = null;
else
prev.next = null;
size--;
modCount++;
return element;
}
/**
* Unlinks non-null node x.
*/
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev;
if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}
if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}
x.item = null;
size--;
modCount++;
return element;
}
/**
* Returns the first element in this list.
*
* @return the first element in this list
* @throws NoSuchElementException if this list is empty
*/
public E getFirst() {
final Node<E> f = first;
if (f == null)
throw new NoSuchElementException();
return f.item;
}
/**
* Returns the last element in this list.
*
* @return the last element in this list
* @throws NoSuchElementException if this list is empty
*/
public E getLast() {
final Node<E> l = last;
if (l == null)
throw new NoSuchElementException();
return l.item;
}
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
|
linkedList根据索引值获取元素, 源码:
/**
* Returns the element at the specified position in this list.
*
* @param index index of the element to return
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}
/**
* Returns the (non-null) Node at the specified element index.
*/
Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
|
队列操作:
// Queue operations.
/**
* Retrieves, but does not remove, the head (first element) of this list.
*
* @return the head of this list, or {@code null} if this list is empty
* @since 1.5
*/
public E peek() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
/**
* Retrieves, but does not remove, the head (first element) of this list.
*
* @return the head of this list
* @throws NoSuchElementException if this list is empty
* @since 1.5
*/
public E element() {
return getFirst();
}
/**
* Retrieves and removes the head (first element) of this list.
*
* @return the head of this list, or {@code null} if this list is empty
* @since 1.5
*/
public E poll() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
/**
* Retrieves and removes the head (first element) of this list.
*
* @return the head of this list
* @throws NoSuchElementException if this list is empty
* @since 1.5
*/
public E remove() {
return removeFirst();
}
/**
* Adds the specified element as the tail (last element) of this list.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Queue#offer})
* @since 1.5
*/
public boolean offer(E e) {
return add(e);
}
// Deque operations
/**
* Inserts the specified element at the front of this list.
*
* @param e the element to insert
* @return {@code true} (as specified by {@link Deque#offerFirst})
* @since 1.6
*/
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
/**
* Inserts the specified element at the end of this list.
*
* @param e the element to insert
* @return {@code true} (as specified by {@link Deque#offerLast})
* @since 1.6
*/
public boolean offerLast(E e) {
addLast(e);
return true;
}
/**
* Retrieves, but does not remove, the first element of this list,
* or returns {@code null} if this list is empty.
*
* @return the first element of this list, or {@code null}
* if this list is empty
* @since 1.6
*/
public E peekFirst() {
final Node<E> f = first;
return (f == null) ? null : f.item;
}
/**
* Retrieves, but does not remove, the last element of this list,
* or returns {@code null} if this list is empty.
*
* @return the last element of this list, or {@code null}
* if this list is empty
* @since 1.6
*/
public E peekLast() {
final Node<E> l = last;
return (l == null) ? null : l.item;
}
/**
* Retrieves and removes the first element of this list,
* or returns {@code null} if this list is empty.
*
* @return the first element of this list, or {@code null} if
* this list is empty
* @since 1.6
*/
public E pollFirst() {
final Node<E> f = first;
return (f == null) ? null : unlinkFirst(f);
}
/**
* Retrieves and removes the last element of this list,
* or returns {@code null} if this list is empty.
*
* @return the last element of this list, or {@code null} if
* this list is empty
* @since 1.6
*/
public E pollLast() {
final Node<E> l = last;
return (l == null) ? null : unlinkLast(l);
}
/**
* Pushes an element onto the stack represented by this list. In other
* words, inserts the element at the front of this list.
*
* <p>This method is equivalent to {@link #addFirst}.
*
* @param e the element to push
* @since 1.6
*/
public void push(E e) {
addFirst(e);
}
/**
* Pops an element from the stack represented by this list. In other
* words, removes and returns the first element of this list.
*
* <p>This method is equivalent to {@link #removeFirst()}.
*
* @return the element at the front of this list (which is the top
* of the stack represented by this list)
* @throws NoSuchElementException if this list is empty
* @since 1.6
*/
public E pop() {
return removeFirst();
}
/**
* Removes the first occurrence of the specified element in this
* list (when traversing the list from head to tail). If the list
* does not contain the element, it is unchanged.
*
* @param o element to be removed from this list, if present
* @return {@code true} if the list contained the specified element
* @since 1.6
*/
public boolean removeFirstOccurrence(Object o) {
return remove(o);
}
/**
* Removes the last occurrence of the specified element in this
* list (when traversing the list from head to tail). If the list
* does not contain the element, it is unchanged.
*
* @param o element to be removed from this list, if present
* @return {@code true} if the list contained the specified element
* @since 1.6
*/
public boolean removeLastOccurrence(Object o) {
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
if (x.item == null) {
unlink(x);
return true;
}
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
if (o.equals(x.item)) {
unlink(x);
return true;
}
}
}
return false;
}
|
1.2.3)Vector:
Vector 非常类似于 ArrayList,区别是 Vector 是线程同步的。
问题:Vector是线程安全的,上面的list改为vector是否不会报错?
final List<String> list = new Vector<String>();
list.add("a");
list.add("b");
list.add("c");
list.add("d");
list.add("b");
new Thread(new Runnable() {
public void run() {
for (String s : list) {
System.out.println("遍历元素:" + s);
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}).start();
new Thread(new Runnable() {
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
list.remove(4);
System.out.println("删除元素");
}
}).start();
|
原因:Vector的很多方法都加上了synchronized来进行线程同步,例如add()、remove()、set()、get(),但是Vector内部的synchronized方法无法控制到遍历操作,所以即使是线程安全的Vector也无法做到线程安全地遍历。
final List<String> list = new Vector<String>();
list.add("a");
list.add("b");
list.add("c");
list.add("d");
list.add("b");
new Thread(new Runnable() {
public void run() {
synchronized (list) {
for (String s : list) {
System.out.println("遍历元素:" + s);
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
}).start();
new Thread(new Runnable() {
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
list.remove(4);
System.out.println("删除元素");
}
}).start();
Thread.sleep(5000);
System.out.println("list:" + list);
|
1.2.4)Stack:
Stack 继承自 Vector,实现了一个后进先出的堆栈。
/**
* Creates an empty Stack.
*/
public Stack() {
}
/**
* Pushes an item onto the top of this stack. This has exactly
* the same effect as:
* <blockquote><pre>
* addElement(item)</pre></blockquote>
*
* @param item the item to be pushed onto this stack.
* @return the <code>item</code> argument.
* @see java.util.Vector#addElement
*/
public E push(E item) {
addElement(item);
return item;
}
/**
* Removes the object at the top of this stack and returns that
* object as the value of this function.
*
* @return The object at the top of this stack (the last item
* of the <tt>Vector</tt> object).
* @throws EmptyStackException if this stack is empty.
*/
public synchronized E pop() {
E obj;
int len = size();
obj = peek();
removeElementAt(len - 1);
return obj;
}
/**
* Looks at the object at the top of this stack without removing it
* from the stack.
*
* @return the object at the top of this stack (the last item
* of the <tt>Vector</tt> object).
* @throws EmptyStackException if this stack is empty.
*/
public synchronized E peek() {
int len = size();
if (len == 0)
throw new EmptyStackException();
return elementAt(len - 1);
}
/**
* Tests if this stack is empty.
*
* @return <code>true</code> if and only if this stack contains
* no items; <code>false</code> otherwise.
*/
public boolean empty() {
return size() == 0;
}
/**
* Returns the 1-based position where an object is on this stack.
* If the object <tt>o</tt> occurs as an item in this stack, this
* method returns the distance from the top of the stack of the
* occurrence nearest the top of the stack; the topmost item on the
* stack is considered to be at distance <tt>1</tt>. The <tt>equals</tt>
* method is used to compare <tt>o</tt> to the
* items in this stack.
*
* @param o the desired object.
* @return the 1-based position from the top of the stack where
* the object is located; the return value <code>-1</code>
* indicates that the object is not on the stack.
*/
public synchronized int search(Object o) {
int i = lastIndexOf(o);
if (i >= 0) {
return size() - i;
}
return -1;
}
|
2. Set
Set 是一种不包含重复的元素的 Collection,它不关心元素的顺序。Set 最多有一个 null 元素。Set判断两个对象相同不是使用"=="运算符,而是根据equals方法。也就是说,我们在加入一个新元素的时候,如果这个新元素对象和Set中已有对象进行注意equals比较都返回false,则Set就会接受这个新元素对象,否则拒绝。
2.1)常用类
2.1.1) HashSet
hashSet实现方式:通过一个HashMap存储元素,元素是存放在HashMap的Key中,而Value统一使用一个Object对象(PRESENT)
private transient HashMap<E,Object> map;
// Dummy value to associate with an Object in the backing Map
private static final Object PRESENT = new Object();
/**
* Constructs a new, empty set; the backing <tt>HashMap</tt> instance has
* default initial capacity (16) and load factor (0.75).
*/
public HashSet() {
map = new HashMap<>();
}
/**
* Adds the specified element to this set if it is not already present.
* More formally, adds the specified element <tt>e</tt> to this set if
* this set contains no element <tt>e2</tt> such that
* <tt>(e==null ? e2==null : e.equals(e2))</tt>.
* If this set already contains the element, the call leaves the set
* unchanged and returns <tt>false</tt>.
*
* @param e element to be added to this set
* @return <tt>true</tt> if this set did not already contain the specified
* element
*/
public boolean add(E e) {
return map.put(e, PRESENT)==null;
}
|
HashMap中源码:
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
if (key == null)
return putForNullKey(value);
int hash = hash(key);
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(hash, key, value, i);
return null;
}
/**
* Offloaded version of put for null keys
*/
private V putForNullKey(V value) {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(0, null, value, 0);
return null;
}
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
return h & (length-1);
}
|
HashSet使用HASH算法来存储集合中的元素,因此具有良好的存取和查找性能。当向HashSet集合中存入一个元素时,HashSet会调用该对象的hashCode()方法来得到该对象的hashCode值,然后根据该HashCode值决定该对象在HashSet中的存储位置。
static class A {
public boolean equals(Object o) {
return true;
}
}
static class B {
public int hashCode() {
return 1;
}
}
static class C {
public boolean equals(Object o) {
return true;
}
public int hashCode() {
return 2;
}
}
public static void main(String[] args) {
Set sets = new HashSet();
sets.add(new A());
sets.add(new A());
sets.add(new B());
sets.add(new B());
sets.add(new C());
sets.add(new C());
System.out.println("sets:" + sets);
}
|
思考:
static class A {
public boolean equals(Object o) {
return true;
}
}
static class B {
public int hashCode() {
return 1;
}
}
static class C {
public boolean equals(Object o) {
return true;
}
public int hashCode() {
return 1;
}
}
public static void main(String[] args) {
Set sets = new HashSet();
sets.add(new A());
sets.add(new A());
sets.add(new B());
sets.add(new B());
sets.add(new C());
sets.add(new C());
System.out.println("sets:" + sets);
}
|
2.1.2)LinkedHashSet
LinkedHashSet集合也是根据元素的hashCode值来决定元素的存储位置,但和HashSet不同的是,它同时使用链表维护元素的次序,这样使得元素看起来是以插入的顺序保存的。当遍历LinkedHashSet集合里的元素时,LinkedHashSet将会按元素的添加顺序来访问集合里的元素。 LinkedHashSet需要维护元素的插入顺序,因此性能略低于HashSet的性能,但在迭代访问Set里的全部元素时(遍历)将有很好的性能(链表很适合进行遍历)。
LinkedHashSet调用了父类HashSet的第五个构造方法:HashSet(int initialCapacity, float loadFactor, boolean dummy)维护元素的插入元素:
public class LinkedHashSet<E> extends HashSet<E> implements Set<E>, Cloneable, Serializable {
private static final long serialVersionUID = -2851667679971038690L;
public LinkedHashSet(int var1, float var2) {
super(var1, var2, true);
}
public LinkedHashSet(int var1) {
super(var1, 0.75F, true);
}
public LinkedHashSet() {
super(16, 0.75F, true);
}
public LinkedHashSet(Collection<? extends E> var1) {
super(Math.max(2 * var1.size(), 11), 0.75F, true);
this.addAll(var1);
}
}
|
/**
* Constructs a new, empty linked hash set. (This package private
* constructor is only used by LinkedHashSet.) The backing
* HashMap instance is a LinkedHashMap with the specified initial
* capacity and the specified load factor.
*
* @param initialCapacity the initial capacity of the hash map
* @param loadFactor the load factor of the hash map
* @param dummy ignored (distinguishes this
* constructor from other int, float constructor.)
* @throws IllegalArgumentException if the initial capacity is less
* than zero, or if the load factor is nonpositive
*/
HashSet(int initialCapacity, float loadFactor, boolean dummy) {
map = new LinkedHashMap<>(initialCapacity, loadFactor);
}
|
2.1.3)TreeSet
TreeSet是SortedSet接口的实现类,TreeSet可以确保集合元素处于排序状态。
TreeSet是基于TreeMap实现的。TreeSet中的元素支持2中排序方式:自然排序或者根据创建TreeSet时提供的Comparator进行排序,这取决于构造方法。
3. Queue
4.1)常用类:
4.1.1)ArrayDeque:
Deque 提供了双端的插入与移除操作,如下表:
| First Element (Head) | Last Element (Tail) | |||
|---|---|---|---|---|
| Throws exception | Special value | Throws exception | Special value | |
| Insert | addFirst(e) | offerFirst(e) | addLast(e) | offerLast(e) |
| Remove | removeFirst() | pollFirst() | removeLast() | pollLast() |
| Examine | getFirst() | peekFirst() | getLast() | peekLast() |
Deque 和 Queue 方法的的对应关系如下:
| Queue Method | Equivalent Deque Method |
|---|---|
| add(e) | addLast(e) |
| offer(e) | offerLast(e) |
| remove() | removeFirst() |
| poll() | pollFirst() |
| element() | getFirst() |
| peek() | peekFirst() |
Deque 和 Stack 方法的对应关系如下:
| Stack Method | Equivalent Deque Method |
|---|---|
| push(e) | addFirst(e) |
| pop() | removeFirst() |
| peek() | peekFirst() |
ArrayList 实现了 Deque 接口中的所有方法。因为 ArrayList 会根据需求自动扩充容量,因而在插入元素的时候不会抛出IllegalStateException异常。
在 ArrayDeque 底部是使用数组存储元素,同时还使用了两个索引来表征当前数组的状态,分别是 head 和 tail。head 是头部元素的索引,但注意 tail 不是尾部元素的索引,而是尾部元素的下一位,即下一个将要被加入的元素的索引。arrayDeque不支持null元素
/**
* The index of the element at the head of the deque (which is the
* element that would be removed by remove() or pop()); or an
* arbitrary number equal to tail if the deque is empty.
*/
private transient int head;
/**
* The index at which the next element would be added to the tail
* of the deque (via addLast(E), add(E), or push(E)).
*/
private transient int tail;
/**
* The minimum capacity that we'll use for a newly created deque.
* Must be a power of 2.
*/
private static final int MIN_INITIAL_CAPACITY = 8;
// ****** Array allocation and resizing utilities ******
/**
* Allocate empty array to hold the given number of elements.
*
* @param numElements the number of elements to hold
*/
private void allocateElements(int numElements) {
int initialCapacity = MIN_INITIAL_CAPACITY;
// Find the best power of two to hold elements.
// Tests "<=" because arrays aren't kept full.
if (numElements >= initialCapacity) {
initialCapacity = numElements;
initialCapacity |= (initialCapacity >>> 1);
initialCapacity |= (initialCapacity >>> 2);
initialCapacity |= (initialCapacity >>> 4);
initialCapacity |= (initialCapacity >>> 8);
initialCapacity |= (initialCapacity >>> 16);
initialCapacity++;
if (initialCapacity < 0) // Too many elements, must back off
initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
}
elements = (E[]) new Object[initialCapacity];
}
|
ArrayDeque 对数组的大小(即队列的容量)有特殊的要求,必须是 2^n。通过 allocateElements方法计算初始容量。
插入元素:
/**
* Inserts the specified element at the front of this deque.
*
* @param e the element to add
* @throws NullPointerException if the specified element is null
*/
public void addFirst(E e) {
if (e == null)
throw new NullPointerException();
elements[head = (head - 1) & (elements.length - 1)] = e;
if (head == tail)
doubleCapacity();
}
/**
* Inserts the specified element at the end of this deque.
*
* <p>This method is equivalent to {@link #add}.
*
* @param e the element to add
* @throws NullPointerException if the specified element is null
*/
public void addLast(E e) {
if (e == null)
throw new NullPointerException();
elements[tail] = e;
if ( (tail = (tail + 1) & (elements.length - 1)) == head)
doubleCapacity();
}
|
扩容:
/**
* Double the capacity of this deque. Call only when full, i.e.,
* when head and tail have wrapped around to become equal.
*/
private void doubleCapacity() {
assert head == tail;
int p = head;
int n = elements.length;
int r = n - p; // number of elements to the right of p
int newCapacity = n << 1;
if (newCapacity < 0)
throw new IllegalStateException("Sorry, deque too big");
Object[] a = new Object[newCapacity];
System.arraycopy(elements, p, a, 0, r);
System.arraycopy(elements, 0, a, r, p);
elements = (E[])a;
head = 0;
tail = n;
}
|
删除元素:
public E pollFirst() {
int h = head;
E result = elements[h]; // Element is null if deque empty
if (result == null)
return null;
elements[h] = null; // Must null out slot
head = (h + 1) & (elements.length - 1);
return result;
}
public E pollLast() {
int t = (tail - 1) & (elements.length - 1);
E result = elements[t];
if (result == null)
return null;
elements[t] = null;
tail = t;
return result;
}
|
获取元素:
public E peekFirst() {
return elements[head]; // elements[head] is null if deque empty
}
public E peekLast() {
return elements[(tail - 1) & (elements.length - 1)];
}
|
4.1.2)PriorityQueue:
优先级队列声明下一个弹出元素是最需要的元素(具有最高的优先级)。PriorityQueue内部由最小堆实现
private static final int DEFAULT_INITIAL_CAPACITY = 11;
/**
* Priority queue represented as a balanced binary heap: the two
* children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
* priority queue is ordered by comparator, or by the elements'
* natural ordering, if comparator is null: For each node n in the
* heap and each descendant d of n, n <= d. The element with the
* lowest value is in queue[0], assuming the queue is nonempty.
*/
private transient Object[] queue;
/**
* The number of elements in the priority queue.
*/
private int size = 0;
/**
* The comparator, or null if priority queue uses elements'
* natural ordering.
*/
private final Comparator<? super E> comparator;
/**
* The number of times this priority queue has been
* <i>structurally modified</i>. See AbstractList for gory details.
*/
private transient int modCount = 0;
/**
* Creates a {@code PriorityQueue} with the default initial
* capacity (11) that orders its elements according to their
* {@linkplain Comparable natural ordering}.
*/
public PriorityQueue() {
this(DEFAULT_INITIAL_CAPACITY, null);
}
/**
* Creates a {@code PriorityQueue} with the specified initial
* capacity that orders its elements according to their
* {@linkplain Comparable natural ordering}.
*
* @param initialCapacity the initial capacity for this priority queue
* @throws IllegalArgumentException if {@code initialCapacity} is less
* than 1
*/
public PriorityQueue(int initialCapacity) {
this(initialCapacity, null);
}
/**
* Creates a {@code PriorityQueue} with the specified initial capacity
* that orders its elements according to the specified comparator.
*
* @param initialCapacity the initial capacity for this priority queue
* @param comparator the comparator that will be used to order this
* priority queue. If {@code null}, the {@linkplain Comparable
* natural ordering} of the elements will be used.
* @throws IllegalArgumentException if {@code initialCapacity} is
* less than 1
*/
public PriorityQueue(int initialCapacity,
Comparator<? super E> comparator) {
// Note: This restriction of at least one is not actually needed,
// but continues for 1.5 compatibility
if (initialCapacity < 1)
throw new IllegalArgumentException();
this.queue = new Object[initialCapacity];
this.comparator = comparator;
}
|
插入元素:将要插入的节点与父节点进行比较,如果更小,就将父节点往下,然后继续向上比较,如果大于等于,就放在当前的位置。
/**
* Inserts the specified element into this priority queue.
*
* @return {@code true} (as specified by {@link Queue#offer})
* @throws ClassCastException if the specified element cannot be
* compared with elements currently in this priority queue
* according to the priority queue's ordering
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
if (e == null)
throw new NullPointerException();
modCount++;
int i = size;
if (i >= queue.length)
grow(i + 1);
size = i + 1;
if (i == 0)
queue[0] = e;
else
siftUp(i, e);
return true;
}
/**
* Inserts item x at position k, maintaining heap invariant by
* promoting x up the tree until it is greater than or equal to
* its parent, or is the root.
*
* To simplify and speed up coercions and comparisons. the
* Comparable and Comparator versions are separated into different
* methods that are otherwise identical. (Similarly for siftDown.)
*
* @param k the position to fill
* @param x the item to insert
*/
private void siftUp(int k, E x) {
if (comparator != null)
siftUpUsingComparator(k, x);
else
siftUpComparable(k, x);
}
private void siftUpComparable(int k, E x) {
Comparable<? super E> key = (Comparable<? super E>) x;
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = queue[parent];
if (key.compareTo((E) e) >= 0)
break;
queue[k] = e;
k = parent;
}
queue[k] = key;
}
private void siftUpUsingComparator(int k, E x) {
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = queue[parent];
if (comparator.compare(x, (E) e) >= 0)
break;
queue[k] = e;
k = parent;
}
queue[k] = x;
}
|
删除元素:删除并返回最小的队头元素后,将数组末位的元素放到队头,然后SiftDown
public E poll() {
if (size == 0)
return null;
int s = --size;
modCount++;
E result = (E) queue[0];
E x = (E) queue[s];
queue[s] = null;
if (s != 0)
siftDown(0, x);
return result;
}
private void siftDown(int k, E x) {
if (comparator != null)
siftDownUsingComparator(k, x);
else
siftDownComparable(k, x);
}
private void siftDownComparable(int k, E x) {
Comparable<? super E> key = (Comparable<? super E>)x;
int half = size >>> 1; // loop while a non-leaf
while (k < half) {
int child = (k << 1) + 1; // assume left child is least
Object c = queue[child];
int right = child + 1;
if (right < size &&
((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
c = queue[child = right];
if (key.compareTo((E) c) <= 0)
break;
queue[k] = c;
k = child;
}
queue[k] = key;
}
private void siftDownUsingComparator(int k, E x) {
int half = size >>> 1;
while (k < half) {
int child = (k << 1) + 1;
Object c = queue[child];
int right = child + 1;
if (right < size &&
comparator.compare((E) c, (E) queue[right]) > 0)
c = queue[child = right];
if (comparator.compare(x, (E) c) <= 0)
break;
queue[k] = c;
k = child;
}
queue[k] = x;
}
|
3. Map接口
Map 提供 Key 到 Value 的映射,一个 Map 中不能包含相同的 Key,每个 Key 只能映射一个 Value。
3.1)Map提供的主要方法:
3.1.1)boolean equals(Object o) 比较对象;
3.1.2)boolean remove(Object o) 删除一个对象;
3.1.3)put(Object key,Object value) 添加 key 和 value。
3.2)常用类:
3.2.1)HashMap
HashMap存储的内容是键值对(key-value)映射,key、value都可以为null。是非线程安全的。
/**
* The default initial capacity - MUST be a power of two.
*/
static final int DEFAULT_INITIAL_CAPACITY = 16;
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
static final int MAXIMUM_CAPACITY = 1 << 30;
/**
* The load factor used when none specified in constructor.
*/
static final float DEFAULT_LOAD_FACTOR = 0.75f;
/**
* The table, resized as necessary. Length MUST Always be a power of two.
*/
transient Entry<K,V>[] table;
/**
* The number of key-value mappings contained in this map.
*/
transient int size;
/**
* The next size value at which to resize (capacity * load factor).
* @serial
*/
int threshold;
/**
* The load factor for the hash table.
*
* @serial
*/
final float loadFactor;
/**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the HashMap fail-fast. (See ConcurrentModificationException).
*/
transient int modCount;
/**
* The default threshold of map capacity above which alternative hashing is
* used for String keys. Alternative hashing reduces the incidence of
* collisions due to weak hash code calculation for String keys.
* <p/>
* This value may be overridden by defining the system property
* {@code jdk.map.althashing.threshold}. A property value of {@code 1}
* forces alternative hashing to be used at all times whereas
* {@code -1} value ensures that alternative hashing is never used.
*/
static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
// Find a power of 2 >= initialCapacity
int capacity = 1;
while (capacity < initialCapacity)
capacity <<= 1;
this.loadFactor = loadFactor;
threshold = (int)Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
table = new Entry[capacity];
useAltHashing = sun.misc.VM.isBooted() &&
(capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
init();
}
|
Entry的数据结构:
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;
int hash;
/**
* Creates new entry.
*/
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}
public final K getKey() {
return key;
}
public final V getValue() {
return value;
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
public final int hashCode() {
return (key==null ? 0 : key.hashCode()) ^
(value==null ? 0 : value.hashCode());
}
public final String toString() {
return getKey() + "=" + getValue();
}
/**
* This method is invoked whenever the value in an entry is
* overwritten by an invocation of put(k,v) for a key k that's already
* in the HashMap.
*/
void recordAccess(HashMap<K,V> m) {
}
/**
* This method is invoked whenever the entry is
* removed from the table.
*/
void recordRemoval(HashMap<K,V> m) {
}
}
|
插入元素:
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value) {
if (key == null)
return putForNullKey(value);
int hash = hash(key);
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(hash, key, value, i);
return null;
}
/**
* Offloaded version of put for null keys
*/
private V putForNullKey(V value) {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(0, null, value, 0);
return null;
}
/**
* Adds a new entry with the specified key, value and hash code to
* the specified bucket. It is the responsibility of this
* method to resize the table if appropriate.
*
* Subclass overrides this to alter the behavior of put method.
*/
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}
createEntry(hash, key, value, bucketIndex);
}
/**
* Like addEntry except that this version is used when creating entries
* as part of Map construction or "pseudo-construction" (cloning,
* deserialization). This version needn't worry about resizing the table.
*
* Subclass overrides this to alter the behavior of HashMap(Map),
* clone, and readObject.
*/
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}
|
获取元素:
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @see #put(Object, Object)
*/
public V get(Object key) {
if (key == null)
return getForNullKey();
Entry<K,V> entry = getEntry(key);
return null == entry ? null : entry.getValue();
}
/**
* Returns the entry associated with the specified key in the
* HashMap. Returns null if the HashMap contains no mapping
* for the key.
*/
final Entry<K,V> getEntry(Object key) {
int hash = (key == null) ? 0 : hash(key);
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}
|
扩容:
/**
* Rehashes the contents of this map into a new array with a
* larger capacity. This method is called automatically when the
* number of keys in this map reaches its threshold.
*
* If current capacity is MAXIMUM_CAPACITY, this method does not
* resize the map, but sets threshold to Integer.MAX_VALUE.
* This has the effect of preventing future calls.
*
* @param newCapacity the new capacity, MUST be a power of two;
* must be greater than current capacity unless current
* capacity is MAXIMUM_CAPACITY (in which case value
* is irrelevant).
*/
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
Entry[] newTable = new Entry[newCapacity];
boolean oldAltHashing = useAltHashing;
useAltHashing |= sun.misc.VM.isBooted() &&
(newCapacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
boolean rehash = oldAltHashing ^ useAltHashing;
transfer(newTable, rehash);
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
/**
* Transfers all entries from current table to newTable.
*/
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}
|
3.2.2)TreeMap
TreeMap就是一个红黑树数据结构,每个key-value对即作为红黑树的一个节点。TreeMap存储key-value对(节点)时,需要根据key对节点进行排序。
TreeMap可以保证所有的key-value对处于有序状态。同样,TreeMap也有两种排序方式: 自然排序、定制排序。
节点数据结构:
/**
* Node in the Tree. Doubles as a means to pass key-value pairs back to
* user (see Map.Entry).
*/
static final class Entry<K,V> implements Map.Entry<K,V> {
K key;
V value;
Entry<K,V> left = null;
Entry<K,V> right = null;
Entry<K,V> parent;
boolean color = BLACK;
/**
* Make a new cell with given key, value, and parent, and with
* {@code null} child links, and BLACK color.
*/
Entry(K key, V value, Entry<K,V> parent) {
this.key = key;
this.value = value;
this.parent = parent;
}
/**
* Returns the key.
*
* @return the key
*/
public K getKey() {
return key;
}
/**
* Returns the value associated with the key.
*
* @return the value associated with the key
*/
public V getValue() {
return value;
}
/**
* Replaces the value currently associated with the key with the given
* value.
*
* @return the value associated with the key before this method was
* called
*/
public V setValue(V value) {
V oldValue = this.value;
this.value = value;
return oldValue;
}
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
}
public int hashCode() {
int keyHash = (key==null ? 0 : key.hashCode());
int valueHash = (value==null ? 0 : value.hashCode());
return keyHash ^ valueHash;
}
public String toString() {
return key + "=" + value;
}
}
|
插入元素:
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
*
* @return the previous value associated with {@code key}, or
* {@code null} if there was no mapping for {@code key}.
* (A {@code null} return can also indicate that the map
* previously associated {@code null} with {@code key}.)
* @throws ClassCastException if the specified key cannot be compared
* with the keys currently in the map
* @throws NullPointerException if the specified key is null
* and this map uses natural ordering, or its comparator
* does not permit null keys
*/
public V put(K key, V value) {
Entry<K,V> t = root;
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
if (cpr != null) {
do {
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
else {
if (key == null)
throw new NullPointerException();
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
Entry<K,V> e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
fixAfterInsertion(e);
size++;
modCount++;
return null;
}
/** From CLR */
private void fixAfterInsertion(Entry<K,V> x) {
x.color = RED;
while (x != null && x != root && x.parent.color == RED) {
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
Entry<K,V> y = rightOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == rightOf(parentOf(x))) {
x = parentOf(x);
rotateLeft(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateRight(parentOf(parentOf(x)));
}
} else {
Entry<K,V> y = leftOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {
if (x == leftOf(parentOf(x))) {
x = parentOf(x);
rotateRight(x);
}
setColor(parentOf(x), BLACK);
setColor(parentOf(parentOf(x)), RED);
rotateLeft(parentOf(parentOf(x)));
}
}
}
root.color = BLACK;
}
|
TreeMap的put方法和其他Map的put方法一样,向Map中加入键值对,若原先“键(key)”已经存在则替换“值(value)”,并返回原先的值。
在put(K key,V value)方法的末尾调用了fixAfterInsertion(Entry<K,V> x)方法,这个方法负责在插入节点后调整树结构和着色,以满足红黑树的要求。
1. 每一个节点或者着成红色,或者着成黑色。
2. 根是黑色的。
3. 如果一个节点是红色的,那么它的子节点必须是黑色的。
4. 一个节点到一个null引用的每一条路径必须包含相同数量的黑色节点。
获取元素
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code key} compares
* equal to {@code k} according to the map's ordering, then this
* method returns {@code v}; otherwise it returns {@code null}.
* (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <em>necessarily</em>
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @throws ClassCastException if the specified key cannot be compared
* with the keys currently in the map
* @throws NullPointerException if the specified key is null
* and this map uses natural ordering, or its comparator
* does not permit null keys
*/
public V get(Object key) {
Entry<K,V> p = getEntry(key);
return (p==null ? null : p.value);
}
|
3.2.3)Hashtable
是一个古老的线程安全的Map实现类
3.2.4)WeakHashMap
WeakHashMap与HashMap的用法基本相似。区别在于,HashMap的key保留了对实际对象的"强引用",这意味着只要该HashMap对象不被销毁,该HashMap所引用的对象就不会被垃圾回收。
但WeakHashMap的key只保留了对实际对象的弱引用,这意味着如果WeakHashMap对象的key所引用的对象没有被其他强引用变量所引用,则这些key所引用的对象可能被垃圾回收,当垃圾回收了该key所对应的实际对象之后,
WeakHashMap也可能自动删除这些key所对应的key-value对。
四、用于多线程中的集合类
-
BlockingQueue
1)DelayQueue:
无界的BlockingQueue,用于放置实现了Delayed接口的对象,其中的对象只能在其到期时才能从队列中取走。
2)PriorityBlockingQueue:
优先级队列,具有可阻塞的读取操作。这种队列的阻塞特性提供了所有必须的同步-----不必考虑当你从这种队列中读取时,其中是否有元素,因为这个队列在没有元素时,将直接阻塞读取者。 -
ConcrrentMap(concurrenthashMap):
ConcurrentHashMap为了提高本身的并发能力,在内部采用了一个叫做Segment的结构,一个Segment其实就是一个类Hash Table的结构,Segment内部维护了一个链表数组。Segment的数据结构:
/** * The maximum number of times to tryLock in a prescan before * possibly blocking on acquire in preparation for a locked * segment operation. On multiprocessors, using a bounded * number of retries maintains cache acquired while locating * nodes. */ static final int MAX_SCAN_RETRIES = Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1; /** * The per-segment table. Elements are accessed via * entryAt/setEntryAt providing volatile semantics. */ transient volatile HashEntry<K,V>[] table; /** * The number of elements. Accessed only either within locks * or among other volatile reads that maintain visibility. */ transient int count; /** * The total number of mutative operations in this segment. * Even though this may overflows 32 bits, it provides * sufficient accuracy for stability checks in CHM isEmpty() * and size() methods. Accessed only either within locks or * among other volatile reads that maintain visibility. */ transient int modCount; /** * The table is rehashed when its size exceeds this threshold. * (The value of this field is always <tt>(int)(capacity * * loadFactor)</tt>.) */ transient int threshold; /** * The load factor for the hash table. Even though this value * is same for all segments, it is replicated to avoid needing * links to outer object. * @serial */ final float loadFactor; Segment(float lf, int threshold, HashEntry<K,V>[] tab) { this.loadFactor = lf; this.threshold = threshold; this.table = tab; }Segment中的元素是以HashEntry的形式存放在链表数组中的,看一下HashEntry的数据结构:
static final class HashEntry<K,V> { final int hash; final K key; volatile V value; volatile HashEntry<K,V> next; HashEntry(int hash, K key, V value, HashEntry<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } }初始化:
/** * Creates a new, empty map with the specified initial * capacity, load factor and concurrency level. * * @param initialCapacity the initial capacity. The implementation * performs internal sizing to accommodate this many elements. * @param loadFactor the load factor threshold, used to control resizing. * Resizing may be performed when the average number of elements per * bin exceeds this threshold. * @param concurrencyLevel the estimated number of concurrently * updating threads. The implementation performs internal sizing * to try to accommodate this many threads. * @throws IllegalArgumentException if the initial capacity is * negative or the load factor or concurrencyLevel are * nonpositive. */ @SuppressWarnings("unchecked") public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (concurrencyLevel > MAX_SEGMENTS) concurrencyLevel = MAX_SEGMENTS; // Find power-of-two sizes best matching arguments int sshift = 0; int ssize = 1; while (ssize < concurrencyLevel) { ++sshift; ssize <<= 1; } this.segmentShift = 32 - sshift; this.segmentMask = ssize - 1; if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; int c = initialCapacity / ssize; if (c * ssize < initialCapacity) ++c; int cap = MIN_SEGMENT_TABLE_CAPACITY; while (cap < c) cap <<= 1; // create segments and segments[0] Segment<K,V> s0 = new Segment<K,V>(loadFactor, (int)(cap * loadFactor), (HashEntry<K,V>[])new HashEntry[cap]); Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize]; UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0] this.segments = ss; }一共有三个参数,一个initialCapacity,表示初始的容量,一个loadFactor,表示负载参数,最后一个是concurrentLevel,代表ConcurrentHashMap内部的Segment的数量。ConcurrentLevel一经指定,不可改变,后续如果ConcurrentHashMap的元素数量增加导致ConrruentHashMap需要扩容,ConcurrentHashMap不会增加Segment的数量,而只会增加Segment中链表数组的容量大小,这样的好处是扩容过程不需要对整个ConcurrentHashMap做rehash,而只需要对Segment里面的元素做一次rehash就可以了。
整个ConcurrentHashMap的初始化方法还是非常简单的,先是根据concurrentLevel来new出Segment,这里Segment的数量是不小于concurrentLevel的最小的2的指数,就是说Segment的数量永远是2的指数个。接下来就是根据intialCapacity确定Segment的容量的大小,每一个Segment的容量大小也是2的指数。
这边需要特别注意一下两个变量,分别是segmentShift和segmentMask,假设构造函数确定了Segment的数量是2的n次方,那么segmentShift就等于32减去n,而segmentMask就等于2的n次方减一。
获取元素:/** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code key.equals(k)}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * * @throws NullPointerException if the specified key is null */ public V get(Object key) { Segment<K,V> s; // manually integrate access methods to reduce overhead HashEntry<K,V>[] tab; int h = hash(key); long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null && (tab = s.table) != null) { for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE); e != null; e = e.next) { K k; if ((k = e.key) == key || (e.hash == h && key.equals(k))) return e.value; } } return null; }由于segments非volatile,通过UNSAFE的getObjectVolatile方法提供volatile读语义来遍历获得对应链表上的节点。但没有锁可能会导致在遍历的过程中被其它线程修改,返回的val可能是过时数据,这部分是ConcurrentHashMap非强一致性的体现
static { int ss, ts; try { UNSAFE = sun.misc.Unsafe.getUnsafe(); Class tc = HashEntry[].class; Class sc = Segment[].class; TBASE = UNSAFE.arrayBaseOffset(tc); SBASE = UNSAFE.arrayBaseOffset(sc); ts = UNSAFE.arrayIndexScale(tc); ss = UNSAFE.arrayIndexScale(sc); HASHSEED_OFFSET = UNSAFE.objectFieldOffset( ConcurrentHashMap.class.getDeclaredField("hashSeed")); SEGSHIFT_OFFSET = UNSAFE.objectFieldOffset( ConcurrentHashMap.class.getDeclaredField("segmentShift")); SEGMASK_OFFSET = UNSAFE.objectFieldOffset( ConcurrentHashMap.class.getDeclaredField("segmentMask")); SEGMENTS_OFFSET = UNSAFE.objectFieldOffset( ConcurrentHashMap.class.getDeclaredField("segments")); } catch (Exception e) { throw new Error(e); } if ((ss & (ss-1)) != 0 || (ts & (ts-1)) != 0) throw new Error("data type scale not a power of two"); SSHIFT = 31 - Integer.numberOfLeadingZeros(ss); TSHIFT = 31 - Integer.numberOfLeadingZeros(ts); }arrayBaseOffset方法是一个本地方法,可以获取数组第一个元素的偏移地址。arrayIndexScale方法也是一个本地方法,可以获取数组的转换因子,也就是数组中元素的增量地址。将arrayBaseOffset与arrayIndexScale配合使用,可以定位数组中每个元素在内存中的位置。h >>> segmentShift) & segmentMask确定了在哪个segment里面,(h >>> segmentShift) & segmentMask) << SSHIFT 确定了这个segment总的增量地址。(((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE确定了在内存中的位置。
添加元素:
/** * Maps the specified key to the specified value in this table. * Neither the key nor the value can be null. * * <p> The value can be retrieved by calling the <tt>get</tt> method * with a key that is equal to the original key. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt> * @throws NullPointerException if the specified key or value is null */ @SuppressWarnings("unchecked") public V put(K key, V value) { Segment<K,V> s; if (value == null) throw new NullPointerException(); int hash = hash(key); int j = (hash >>> segmentShift) & segmentMask; if ((s = (Segment<K,V>)UNSAFE.getObject // nonvolatile; recheck (segments, (j << SSHIFT) + SBASE)) == null) // in ensureSegment s = ensureSegment(j); return s.put(key, hash, value, false); } /** * Returns the segment for the given index, creating it and * recording in segment table (via CAS) if not already present. * * @param k the index * @return the segment */ @SuppressWarnings("unchecked") private Segment<K,V> ensureSegment(int k) { final Segment<K,V>[] ss = this.segments; long u = (k << SSHIFT) + SBASE; // raw offset Segment<K,V> seg; if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { Segment<K,V> proto = ss[0]; // use segment 0 as prototype int cap = proto.table.length; float lf = proto.loadFactor; int threshold = (int)(cap * lf); HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap]; if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { // recheck Segment<K,V> s = new Segment<K,V>(lf, threshold, tab); while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) { if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s)) break; } } } return seg; } final V put(K key, int hash, V value, boolean onlyIfAbsent) { HashEntry<K,V> node = tryLock() ? null : scanAndLockForPut(key, hash, value); V oldValue; try { HashEntry<K,V>[] tab = table; int index = (tab.length - 1) & hash; HashEntry<K,V> first = entryAt(tab, index); for (HashEntry<K,V> e = first;;) { if (e != null) { K k; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { oldValue = e.value; if (!onlyIfAbsent) { e.value = value; ++modCount; } break; } e = e.next; } else { if (node != null) node.setNext(first); else node = new HashEntry<K,V>(hash, key, value, first); int c = count + 1; if (c > threshold && tab.length < MAXIMUM_CAPACITY) rehash(node); else setEntryAt(tab, index, node); ++modCount; count = c; oldValue = null; break; } } } finally { unlock(); } return oldValue; } /** * Scans for a node containing given key while trying to * acquire lock, creating and returning one if not found. Upon * return, guarantees that lock is held. UNlike in most * methods, calls to method equals are not screened: Since * traversal speed doesn't matter, we might as well help warm * up the associated code and accesses as well. * * @return a new node if key not found, else null */ private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) { HashEntry<K,V> first = entryForHash(this, hash); HashEntry<K,V> e = first; HashEntry<K,V> node = null; int retries = -1; // negative while locating node while (!tryLock()) { HashEntry<K,V> f; // to recheck first below if (retries < 0) { if (e == null) { if (node == null) // speculatively create node node = new HashEntry<K,V>(hash, key, value, null); retries = 0; } else if (key.equals(e.key)) retries = 0; else e = e.next; } else if (++retries > MAX_SCAN_RETRIES) { lock(); break; } else if ((retries & 1) == 0 && (f = entryForHash(this, hash)) != first) { e = first = f; // re-traverse if entry changed retries = -1; } } return node; } /** * The maximum number of times to tryLock in a prescan before * possibly blocking on acquire in preparation for a locked * segment operation. On multiprocessors, using a bounded * number of retries maintains cache acquired while locating * nodes. */ static final int MAX_SCAN_RETRIES = Runtime.getRuntime().availableProcessors() > 1 ? 64 : 1; /** * Sets the ith element of given table, with volatile write * semantics. (See above about use of putOrderedObject.) */ static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i, HashEntry<K,V> e) { UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e); } /** * Doubles size of table and repacks entries, also adding the * given node to new table */ @SuppressWarnings("unchecked") private void rehash(HashEntry<K,V> node) { /* * Reclassify nodes in each list to new table. Because we * are using power-of-two expansion, the elements from * each bin must either stay at same index, or move with a * power of two offset. We eliminate unnecessary node * creation by catching cases where old nodes can be * reused because their next fields won't change. * Statistically, at the default threshold, only about * one-sixth of them need cloning when a table * doubles. The nodes they replace will be garbage * collectable as soon as they are no longer referenced by * any reader thread that may be in the midst of * concurrently traversing table. Entry accesses use plain * array indexing because they are followed by volatile * table write. */ HashEntry<K,V>[] oldTable = table; int oldCapacity = oldTable.length; int newCapacity = oldCapacity << 1; threshold = (int)(newCapacity * loadFactor); HashEntry<K,V>[] newTable = (HashEntry<K,V>[]) new HashEntry[newCapacity]; int sizeMask = newCapacity - 1; for (int i = 0; i < oldCapacity ; i++) { HashEntry<K,V> e = oldTable[i]; if (e != null) { HashEntry<K,V> next = e.next; int idx = e.hash & sizeMask; if (next == null) // Single node on list newTable[idx] = e; else { // Reuse consecutive sequence at same slot HashEntry<K,V> lastRun = e; int lastIdx = idx; for (HashEntry<K,V> last = next; last != null; last = last.next) { int k = last.hash & sizeMask; if (k != lastIdx) { lastIdx = k; lastRun = last; } } newTable[lastIdx] = lastRun; // Clone remaining nodes for (HashEntry<K,V> p = e; p != lastRun; p = p.next) { V v = p.value; int h = p.hash; int k = h & sizeMask; HashEntry<K,V> n = newTable[k]; newTable[k] = new HashEntry<K,V>(h, p.key, v, n); } } } } int nodeIndex = node.hash & sizeMask; // add the new node node.setNext(newTable[nodeIndex]); newTable[nodeIndex] = node; table = newTable; }
ensureSegment(int k)对segment初始化。scanAndLockForPut(K key, int hash, V value)如果对应key的HashEntry不存在则创建一个,存在返回null,这个方法返回即代表该线程获取了锁。删除元素:
/** * Removes the key (and its corresponding value) from this map. * This method does nothing if the key is not in the map. * * @param key the key that needs to be removed * @return the previous value associated with <tt>key</tt>, or * <tt>null</tt> if there was no mapping for <tt>key</tt> * @throws NullPointerException if the specified key is null */ public V remove(Object key) { int hash = hash(key); Segment<K,V> s = segmentForHash(hash); return s == null ? null : s.remove(key, hash, null); } /** * Get the segment for the given hash */ @SuppressWarnings("unchecked") private Segment<K,V> segmentForHash(int h) { long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE; return (Segment<K,V>) UNSAFE.getObjectVolatile(segments, u); } /** * Remove; match on key only if value null, else match both. */ final V remove(Object key, int hash, Object value) { if (!tryLock()) scanAndLock(key, hash); V oldValue = null; try { HashEntry<K,V>[] tab = table; int index = (tab.length - 1) & hash; HashEntry<K,V> e = entryAt(tab, index); HashEntry<K,V> pred = null; while (e != null) { K k; HashEntry<K,V> next = e.next; if ((k = e.key) == key || (e.hash == hash && key.equals(k))) { V v = e.value; if (value == null || value == v || value.equals(v)) { if (pred == null) setEntryAt(tab, index, next); else pred.setNext(next); ++modCount; --count; oldValue = v; } break; } pred = e; e = next; } } finally { unlock(); } return oldValue; } /** * Gets the ith element of given table (if nonnull) with volatile * read semantics. Note: This is manually integrated into a few * performance-sensitive methods to reduce call overhead. */ @SuppressWarnings("unchecked") static final <K,V> HashEntry<K,V> entryAt(HashEntry<K,V>[] tab, int i) { return (tab == null) ? null : (HashEntry<K,V>) UNSAFE.getObjectVolatile (tab, ((long)i << TSHIFT) + TBASE); } /** * Sets the ith element of given table, with volatile write * semantics. (See above about use of putOrderedObject.) */ static final <K,V> void setEntryAt(HashEntry<K,V>[] tab, int i, HashEntry<K,V> e) { UNSAFE.putOrderedObject(tab, ((long)i << TSHIFT) + TBASE, e); } -
CopyOnWriteArrayList、CopyOnWriteArraySet:
CopyOnWrite的意思是在写时拷贝,也就是如果需要对CopyOnWriteArrayList的内容进行改变,首先会拷贝一份新的List并且在新的List上进行修改,最后将原List的引用指向新的List。
final List<String> list = new CopyOnWriteArrayList<String>();
list.add("a");
list.add("b");
list.add("c");
list.add("d");
list.add("b");
new Thread(new Runnable() {
public void run() {
for (String s : list) {
System.out.println("遍历元素:" + s);
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}).start();
new Thread(new Runnable() {
public void run() {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
list.remove(4);
System.out.println("删除元素");
}
}).start();
Thread.sleep(5000);
System.out.println("list:" + list);
|
正常运行原因:使用CopyOnWriteArrayList可以线程安全地遍历,因为如果另外一个线程在遍历的时候修改List的话,实际上会拷贝出一个新的List上修改,而不影响当前正在被遍历的List。
五、集合的一些实用方法
1.list给元素排序:
Collections.sort(shoppingCouponRelatedShopInfos, new Comparator<ShoppingCouponRelatedShopInfoDTO>() {
@Override
public int compare(ShoppingCouponRelatedShopInfoDTO o1, ShoppingCouponRelatedShopInfoDTO o2) {
return o2.getPower() > o1.getPower() ? 1 : -1;
}
});
|
报错:java.lang.IllegalArgumentException: Comparison method violates its general contract!
原因:
Comparator的实现必须保证以下几点:
- sgn(compare(x, y)) == -sgn(compare(y, x))
- (compare(x, y)>0) && (compare(y, z)>0) 意味着 compare(x, z)>0
- compare(x, y)==0 意味着对于任意的z:sgn(compare(x, z))==sgn(compare(y, z)) 均成立
2.设定Collection或Map为不可修改
LinkedList<Integer> list = new LinkedList<Integer>();
list.add(1);
list.add(2);
list.add(1);
list.addFirst(3);
Collection<Integer> integerCollection = Collections.unmodifiableCollection(list);
// integerCollection.remove(1);
integerCollection.add(4);
System.out.println("list:" + list);
|
任何会改变容器内容的操作都会引起UnsupportedOperationException异常
3.Collection或Map的同步控制
List<String> list = Collections.synchronizedList(new ArrayList<String>()); |
参考文章:
http://www.cnblogs.com/LittleHann/p/3690187.html
http://blog.csdn.net/qh_java/article/details/50154405
Java 7 comparator报错分析示例:http://blog.2baxb.me/archives/993
Deque源码分析:http://blog.jrwang.me/2016/java-collections-deque-arraydeque/
TreeMap源码分析:http://www.jianshu.com/p/5789e3c743f6
concurrentHashMap分析:http://www.cnblogs.com/dolphin0520/p/3932905.html、http://www.cnblogs.com/sunshine-2015/p/thread.html