public class RunnableFutureTask {
static FinalizableDelegatedExecutorService executorService = (FinalizableDelegatedExecutorService) Executors1.newSingleThreadExecutor(); //创建一个单线程执行器
public static void main(String[] args) throws InterruptedException, ExecutionException {
futureDemo();
}
static void futureDemo() throws InterruptedException, ExecutionException {
/*调用FinalizableDelegatedExecutorService的submit,转调ThreadPoolExecutor1的submit,
转调父类AbstractExecutorService1的submit,提交给线程池的是一个FutureTask,线程池里面调用runWorker(),
然后Runnable的run方法,就是FutureTask的run方法(开了线程池的一个线程去执行),executorService.submit线程退出到外层。
FutureTask的run方法没有返回值,结果是在FutureTask的outcome属性里面的。result2.get()就是获取FutureTask的outcome属性。*/
Future<String> result2 = executorService.submit(new Callable<String>() {
public String call() throws Exception {
return "result2";
}
});
System.out.println("future result from callable:"+result2.get());
//executorService.submit会把Callable封装成FutureTask然后丢到线程池执行,结果在FutureTask自身中。
FutureTask1<String> result3 = new FutureTask1<String>(new Callable<String>() {
public String call() throws Exception {
return "result3";
}
});
executorService.submit(result3);
/*submit会把result3再封装为FutureTask,丢到线程池执行,线程池最后执行runWorker(),然后Runnable的run方法,
就是外层FutureTask的run方法(开了线程池的一个线程去执行),外层FutureTask run()时候调用里面result3的call方法,
result3作为一个Runnable已经被封装为了一个Callable,就嗲用封装的call(),转为调用里面真正result3的run方法,
result3的run方法执行时候,调用里面匿名内部类的call(),设置结果给result3。*/
System.out.println("future result from FutureTask:" + result3.get());
}
}
public abstract class AbstractExecutorService1 implements ExecutorService {
// 对Runnable的封装,T是期望值
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
return new FutureTask1<T>(runnable, value);
}
// 对Callable的封装
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
return new FutureTask1<T>(callable);// FutureTask1是一个Runnable,也就是通过execute提交给ThreadPoolExecutor线程池的一个任务
}
// Runnable封装为FutureTask,把FutureTask(是一个Runnable)作为任务丢到线程池执行,并且返回这个FutureTask。从FutureTask得到执行结果。
public Future<?> submit(Runnable task) {
if (task == null)
throw new NullPointerException();
RunnableFuture<Void> ftask = newTaskFor(task, null);// FutureTask1
execute(ftask);
return ftask;// ftask是一个Runnable,也就是通过execute提交给ThreadPoolExecutor线程池的一个任务
// 从ftask FutureTask获取结果
}
// Runnable封装为FutureTask,把FutureTask(是一个Runnable)作为任务丢到线程池执行,并且返回这个FutureTask。。从FutureTask得到执行结果。
// T是期望值
public <T> Future<T> submit(Runnable task, T result) {
if (task == null)
throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task, result);// FutureTask1
execute(ftask);
return ftask;// 从ftask FutureTask获取结果
}
// Callable封装为FutureTask,把FutureTask(是一个Runnable)作为任务丢到线程池执行,并且返回这个FutureTask。。从FutureTask得到执行结果。
public <T> Future<T> submit(Callable<T> task) {
if (task == null)
throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);// FutureTask1
execute(ftask);
return ftask;// 从ftask FutureTask获取结果
}
// invokeAny()和invokeAll()方法是以批量的形式执行一组任务,然后等待至少一个或者全部的任务完成。
//一批任务中的某个任务完成了,就返回他的结果,所以他返回的是最快执行完成的那个任务的结果,他的重载方法,加入了超时机制,如果超过了限制的时间也没有一个任务完成,那么就会抛出超时异常了。
private <T> T doInvokeAny(Collection<? extends Callable<T>> tasks, boolean timed, long nanos)
throws InterruptedException, ExecutionException, TimeoutException {
if (tasks == null)
throw new NullPointerException();
int ntasks = tasks.size();
if (ntasks == 0)
throw new IllegalArgumentException();
ArrayList<Future<T>> futures = new ArrayList<Future<T>>(ntasks);
ExecutorCompletionService1<T> ecs = new ExecutorCompletionService1<T>(this);
// 为了提高效率,特别是在并行性有限的执行器中,请在提交更多任务之前检查以前提交的任务是否已完成。这种交织加上异常机制解释了主循环的混乱。
try {
// 记录异常,以便如果我们无法获得任何结果,我们可以抛出最后一个异常。
ExecutionException ee = null;
final long deadline = timed ? System.nanoTime() + nanos : 0L;
Iterator<? extends Callable<T>> it = tasks.iterator();
// Start one task for sure; the rest incrementally
futures.add(ecs.submit(it.next()));
--ntasks;
int active = 1;
for (;;) {
Future<T> f = ecs.poll();
if (f == null) {
if (ntasks > 0) {
--ntasks;
futures.add(ecs.submit(it.next()));
++active;
} else if (active == 0)
break;
else if (timed) {
f = ecs.poll(nanos, TimeUnit.NANOSECONDS);
if (f == null)
throw new TimeoutException();
nanos = deadline - System.nanoTime();
} else
f = ecs.take();
}
if (f != null) {
--active;
try {
return f.get();
} catch (ExecutionException eex) {
ee = eex;
} catch (RuntimeException rex) {
ee = new ExecutionException(rex);
}
}
}
if (ee == null)
ee = (ExecutionException) new Exception();
throw ee;
} finally {
for (int i = 0, size = futures.size(); i < size; i++)
futures.get(i).cancel(true);
}
}
public <T> T invokeAny(Collection<? extends Callable<T>> tasks) throws InterruptedException, ExecutionException {
try {
return doInvokeAny(tasks, false, 0);
} catch (TimeoutException cannotHappen) {
assert false;
return null;
}
}
public <T> T invokeAny(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
return doInvokeAny(tasks, true, unit.toNanos(timeout));
}
//批量提交并执行任务,当所有任务都执行完成时,返回一个保存任务状态和执行结果的Future列表。
public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) throws InterruptedException {
if (tasks == null)// 如果任务集后为空,则抛出一个NullPointerException
throw new NullPointerException();
// 创建一个和任务数量等大的ArrayList.
ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
boolean done = false;//标志任务是否完成
try {
//将tasks里面的每个Callable转化成Future,添加到futures里面,并交给Executor#execute()方法执行
for (Callable<T> t : tasks) {
RunnableFuture<T> f = newTaskFor(t);// FutureTask1
futures.add(f);
execute(f);
}
//判断futures里面的Future是否执行结束,如果还没有完成,通过get()阻塞直到任务完成
//也是就说执行完这一段代码,futures里面的每一个任务都是执行完成的情况
for (int i = 0, size = futures.size(); i < size; i++) {
Future<T> f = futures.get(i);
if (!f.isDone()) {
try {
f.get();
} catch (CancellationException ignore) {
} catch (ExecutionException ignore) {
}
}
}
done = true;
return futures;
} finally {
if (!done)//如果任务没有完成的,就全部都取消,并释放内存
for (int i = 0, size = futures.size(); i < size; i++)
futures.get(i).cancel(true);//采用中断线程的方式取消任务
}
}
//重载方法也是类似的,就是加入了一个超时时间,不管是所有的任务都执行完,还是已经到达超时的时间,只有两个有中满足其中一个,就会返回一个保存任务状态和执行结果的Future列表。
public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit)
throws InterruptedException {
if (tasks == null)
throw new NullPointerException();//如果任务集后为空,则抛出一个NullPointerException
long nanos = unit.toNanos(timeout);//将超时时间转化成纳秒
ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());//创建一个和任务数量等大的ArrayList.
boolean done = false;
try {
for (Callable<T> t : tasks)
futures.add(newTaskFor(t));//将tasks里面的每个Callable转化成Future,添加到futures里面
final long deadline = System.nanoTime() + nanos;//超时时间点
final int size = futures.size();//记录一下futures的大小,
//执行任务,如果超时就直接返回futures
for (int i = 0; i < size; i++) {
execute((Runnable) futures.get(i));
nanos = deadline - System.nanoTime();
if (nanos <= 0L)
return futures;
}
//判断futures里面的Future是否执行结束,如果还没有完成,通过get()阻塞直到任务完成
//也是就说执行完这一段代码,要么futures里面的每一个任务都是执行完成了,要么就是超时了
for (int i = 0; i < size; i++) {
Future<T> f = futures.get(i);
if (!f.isDone()) {
if (nanos <= 0L)
return futures;
try {
f.get(nanos, TimeUnit.NANOSECONDS);//这里捕捉了get()方法可能出现了所有的异常
} catch (CancellationException ignore) {
} catch (ExecutionException ignore) {
} catch (TimeoutException toe) {
return futures;
}
nanos = deadline - System.nanoTime();
}
}
done = true;//标记任务完成
return futures;
} finally {
if (!done)//如果任务没有完成的,就全部都取消,并释放内存
for (int i = 0, size = futures.size(); i < size; i++)
futures.get(i).cancel(true);//采用中断线程的方式取消任务
}
}
}