[LeetCode]Distinct Subsequences,解题报告
题目
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).
Here is an example:
S = "rabbbit", T = "rabbit"
Return 3.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).
Here is an example:
S = "rabbbit", T = "rabbit"
Return 3.
思路1
開始非常easy想到深搜,通过flags数组做标记位。得到子串的个数
代码:
import java.util.Scanner;
public class DistinctSubsequences {
private static int disNum = 0;
public static int numDistinct(String S, String T) {
int[] flags = new int[S.length()];
int num = 0;
dfs(num, flags, 0, 0, S, T);
return disNum;
}
public static void dfs(int num, int[] flags, int indexS, int indexT, String S, String T) {
if (num == T.length()) {
disNum++;
} else {
for (int i = indexS; i < S.length(); i ++) {
if (S.charAt(i) == T.charAt(indexT) && flags[i] == 0) {
flags[i] = 1;
num++;
dfs(num, flags, i + 1, indexT + 1, S, T);
flags[i] = 0;
num--;
}
}
}
}
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
while (cin.hasNext()) {
String S = cin.nextLine();
String T = cin.nextLine();
disNum = 0;
int res = numDistinct(S, T);
System.out.println(res);
}
cin.close();
}
}
可是在大集合的时候 Time Limit Exceeded
思路2
既然简单的深搜超时,仅仅能考虑略微复杂一点的DP了。
能够參考动态规划经典的样例。最长公共子序列。
这里我採用二维数组int[][] dp来记录匹配子序列的个数,则状态方程为:
dp[0][0] = 1, T和S均为空串
dp[0][1..S.length() - 1] = 1, T为空串,S仅仅有一种子序列匹配
dp[1..T.length() - 1][0] = 0, S为空串
dp[i][j] = dp[i][j - 1] + (T[i - 1] == S[j - 1] ? dp[i - 1][j - 1] : 0)
代码:
public class Solution {
public static int numDistinct(String S, String T) {
if (S == null || S.length() == 0) {
return 0;
}
int[][] dp = new int[T.length() + 1][S.length() + 1];
dp[0][0] = 1;
for (int i = 1; i <= S.length(); i++) {
dp[0][i] = 1;
}
for (int i = 1; i <= T.length(); i++) {
dp[i][0] = 0;
}
for (int i = 1; i <= T.length(); i++) {
for (int j = 1; j <= S.length(); j++) {
if (T.charAt(i - 1) == S.charAt(j - 1)) {
dp[i][j] = dp[i][j - 1] + dp[i - 1][j - 1];
} else {
dp[i][j] = dp[i][j - 1];
}
}
}
return dp[T.length()][S.length()];
}
}

浙公网安备 33010602011771号