1 import pandas as pd
2 import numpy as np
3
4 s = pd.Series(np.random.rand(5), index=list('abcde'))
5 # 创建序列,其中 index=list('abcde')为每一行添加索引
6 s.index.name='alpha' # 为行索引添加名称标签
7
8 df = pd.DataFrame(np.random.randn(4,3), columns=['one','two','three'])
9 # 创建DataFrame,其中columns=['one','two','three']表示为每一列添加索引
10 df.index.name = 'row' # 为行索引添加名称标签
11 df.columns.name = 'col' # 为列索引添加名称标签
1 import pandas as pd
2 import numpy as np
3
4 s = pd.Series(np.arange(6), index=list('abcbda'))
5 # 创建一个带有重复索引的Series
6
7 s['a'] # 找出a的所有索引对应的值
8 s.index.is_unique # 判断s中每个索引是否独一无二
9 s.index.unique() # 找出s中不重复的索引
10
11 s.groupby(s.index).sum() # 将索引分组并求和
12 s.groupby(s.index).mean() # 将索引分组并求均值
13 s.groupby(s.index).first() # 将索引分组并取第一项
1 import pandas as pd
2 import numpy as np
3
4 a = [['a','a','a','b','b','c','c'],[1,2,3,1,2,2,3]]
5 t = list(zip(*a))
6 index = pd.MultiIndex.from_tuples(t,names=['level1','level2'])
7 s = pd.Series(np.random.rand(7),index=index)
8 # 输出 s
9 level1 level2
10 a 1 0.029233
11 2 0.539508
12 3 0.502217
13 b 1 0.536222
14 2 0.217398
15 c 2 0.551864
16 3 0.596248
17
18 s['b']
19 # 输出
20 level2
21 1 0.536222
22 2 0.217398
23 dtype: float64
24
25 s['b':'c']
26 # 输出
27 level1 level2
28 b 1 0.536222
29 2 0.217398
30 c 2 0.551864
31 3 0.596248
32 dtype: float64
33
34 s[['a','c']]
35 # 输出
36 level1 level2
37 a 1 0.029233
38 2 0.539508
39 3 0.502217
40 c 2 0.551864
41 3 0.596248
42 dtype: float64
43
44 s[:,2]
45 # 输出
46 level1
47 a 0.539508
48 b 0.217398
49 c 0.551864
50 dtype: float64