文本处理
#导入os包加载数据目录 import os path = r'E:\dzy' #停词库 with open(r'e:\\stopsCN.txt', encoding='utf-8') as f: stopwords = f.read().split('\n')
#对数据进行标准编码处理(encoding='utf-8') import codecs import jieba #存放文件名 filePaths = [] #存放读取的数据 fileContents = [] #存放文件类型 fileClasses = [] #进行遍历实现转码读取处理并对每条新闻进行切分 for root, dirs, files in os.walk(path): for name in files: filePath = os.path.join(root, name) filePaths.append(filePath) fileClasses.append(filePath.split('\\')[2]) f = codecs.open(filePath, 'r', 'utf-8') fileContent = f.read() fileContent = fileContent.replace('\n','') tokens = [token for token in jieba.cut(fileContent)] tokens = " ".join([token for token in tokens if token not in stopwords]) f.close() fileContents.append(tokens)
import pandas; all_datas = pandas.DataFrame({ 'fileClass': fileClasses, 'fileContent': fileContents }) print(all_datas)
str='' for i in range(len(fileContents)): str+=fileContents[i] #TF-IDF算法 #统计词频 import jieba.analyse keywords = jieba.analyse.extract_tags(str, topK=20, withWeight=True, allowPOS=('n','nr','ns')) print(keywords )
from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(fileContents,fileClasses,test_size=0.3,random_state=0,stratify=fileClasses) vectorizer = TfidfVectorizer() X_train = vectorizer.fit_transform(x_train) X_test = vectorizer.transform(x_test) from sklearn.naive_bayes import MultinomialNB clf= MultinomialNB().fit(X_train,y_train) y_nb_pred=clf.predict(X_test) #分类结果显示 from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report print('nb_confusion_matrix:') print(y_nb_pred.shape,y_nb_pred)#x_test预测结果 cm=confusion_matrix(y_test,y_nb_pred)#混淆矩阵 print('nb_classification_report:') print(cm)