P3338 [ZJOI2014]力(FFT)

题目

P3338 [ZJOI2014]力

做法

普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\)
其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略那部分,其他的直接按下标存下来,反正最后的答案是不变的

好了步入正题吧,我们定义 $$F_j=\sum\limits_{i<j}\dfrac{q_iq_j}{(i-j)2}-\sum\limits_{i<j}\dfrac{q_iq_j}{(i-j)2}$$

\(E_i=\dfrac{F_i}{q_i}\)

显然$$E_j=\sum\limits_{i<j}\dfrac{q_i}{(i-j)2}-\sum\limits_{i<j}\dfrac{q_i}{(i-j)2}$$

\[E_j=\sum_{i=1}^{j-1}\dfrac{q_i}{(i-j)^2}-\sum_{i=j+1}^{n}\dfrac{q_i}{(i-j)^2} \]

\(f_i=q_i,g_i=\dfrac{1}{i^2}\),特别地,\(g_0=0\),则有:$$E_j=\sum_{i=1}{j-1}f_ig_{i-j}-\sum_{i=j+1}f_ig_{i-j}$$

左边部分很简单就能化成卷积形式:$$\sum_{i=1}{j-1}f_ig_{i-j}=\sum_{i=1}f_ig_{j-i}=\sum_{i=1}^{j}f_ig_{j-i}$$

右边部分:$$\sum\limits_{i=j+1}{n}f_ig_{i-j}=\sum\limits_{i=1}f_{i+j}g_{i}$$

\(p_i=f_{n-i}\),则\(p_{n-i-j}=f_{i+j}\),则有:$$\sum\limits_{i=1}{n-j}f_{i+j}g_{i}=\sum_{i=1} p_{n-i-j}g_i$$

都化成卷积形式了直接FFT

My complete code

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
const double Pi=acos(-1.0);
const int maxn=300000;
struct complex{
    double x,y;
    complex (double xx=0,double yy=0){
        x=xx,y=yy;
    }
}f[maxn],p[maxn],g[maxn];
int n,limit,L;
int r[maxn];
complex operator + (complex x,complex y){
    return complex(x.x+y.x,x.y+y.y);
}
complex operator - (complex x,complex y){
    return complex(x.x-y.x,x.y-y.y);
}
complex operator * (complex x,complex y){
    return complex(x.x*y.x-x.y*y.y,x.x*y.y+x.y*y.x);
}
inline void FFT(complex *A,int type){
    for(int i=0;i<limit;++i)
        if(i<r[i]) 
            swap(A[i],A[r[i]]);
    for(int mid=1;mid<limit;mid<<=1){
        complex WN(cos(Pi/mid),type*sin(Pi/mid));
        for(int R=mid<<1,j=0;j<limit;j+=R){
            complex w(1,0);
            for(int k=0;k<mid;++k,w=w*WN){
                complex x=A[j+k],y=w*A[j+mid+k];
                A[j+k]=x+y,
                A[j+mid+k]=x-y;
            }
        }
    }
}
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;++i){
        scanf("%lf",&f[i].x),f[i].y=0,
        g[i].x=(double)1.0/i/i;
        p[n-i].x=f[i].x;
    }
    limit=1,L=0;
    while(limit<n+n)
        limit<<=1,
        ++L;
    for(int i=0;i<limit;++i)
        r[i]=(r[i>>1]>>1)|((i&1)<<(L-1));
    FFT(f,1),FFT(p,1),FFT(g,1);
    for(int i=0;i<limit;++i)
        f[i]=f[i]*g[i];
    for(int i=0;i<limit;++i)
        p[i]=p[i]*g[i];
    FFT(f,-1),FFT(p,-1);
    for(int i=1;i<=n;++i)
        printf("%.3lf\n",f[i].x/limit-p[n-i].x/limit);
    return 0;
}/*
*/
posted @ 2019-01-19 20:54  y2823774827y  阅读(165)  评论(0)    收藏  举报