tensorflow_probability.python.bijectors的一些使用
网上见到一个TensorFlow的代码,没见过这个形式的,是概率编程的代码:
# coding=utf-8 # Copyright 2020 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tanh bijector.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf # pylint: disable=g-explicit-tensorflow-version-import from tensorflow_probability.python.bijectors import bijector __all__ = [ "Tanh", ] class Tanh(bijector.Bijector): """Bijector that computes `Y = tanh(X)`, therefore `Y in (-1, 1)`. This can be achieved by an affine transform of the Sigmoid bijector, i.e., it is equivalent to ``` tfb.Chain([tfb.Affine(shift=-1, scale=2.), tfb.Sigmoid(), tfb.Affine(scale=2.)]) ``` However, using the `Tanh` bijector directly is slightly faster and more numerically stable. """ def __init__(self, validate_args=False, name="tanh"): parameters = dict(locals()) super(Tanh, self).__init__( forward_min_event_ndims=0, validate_args=validate_args, parameters=parameters, name=name) def _forward(self, x): return tf.nn.tanh(x) def _inverse(self, y): # 0.99999997 is the maximum value such that atanh(x) is valid for both # tf.float32 and tf.float64 y = tf.where(tf.less_equal(tf.abs(y), 1.), tf.clip_by_value(y, -0.99999997, 0.99999997), y) return tf.atanh(y) def _forward_log_det_jacobian(self, x): # This formula is mathematically equivalent to # `tf.log1p(-tf.square(tf.tanh(x)))`, however this code is more numerically # stable. # Derivation: # log(1 - tanh(x)^2) # = log(sech(x)^2) # = 2 * log(sech(x)) # = 2 * log(2e^-x / (e^-2x + 1)) # = 2 * (log(2) - x - log(e^-2x + 1)) # = 2 * (log(2) - x - softplus(-2x)) return 2.0 * ( tf.math.log(tf.constant(2.0, dtype=x.dtype)) - x - tf.nn.softplus( -2.0 * x))
================================================
由于不是很理解这个代码的意思,于是找了下TensorFlow的官方文档:
https://tensorflow.google.cn/probability/api_docs/python/tfp/bijectors/Bijector
class Exp(Bijector): def __init__(self, validate_args=False, name='exp'): super(Exp, self).__init__( validate_args=validate_args, forward_min_event_ndims=0, name=name) def _forward(self, x): return tf.exp(x) def _inverse(self, y): return tf.log(y) def _inverse_log_det_jacobian(self, y): return -self._forward_log_det_jacobian(self._inverse(y)) def _forward_log_det_jacobian(self, x): # Notice that we needn't do any reducing, even when`event_ndims > 0`. # The base Bijector class will handle reducing for us; it knows how # to do so because we called `super` `__init__` with # `forward_min_event_ndims = 0`. return x ```
根据文档内容可以知道,这个bijectors是双向映射,也就是说知道g(X)=Y,知道X的概率分布及概率密度,现在要求Y的概率密度。上面代码中_forward函数和_inverse函数的含义比较好理解,也就是原函数与反函数,但是这个_forward_log_det_jacobian函数是什么意思就不是很好理解了,这里也就是说下个人的理解,不保证正确:
_forward_log_det_jacobian函数的输入变量为x,其函数需要返回的就是_forward函数的导数的log值,也就是log( _forward(x)导数 ),由于上面代码的_forward函数为tf.exp(x),因此_forward(x)的导数也为tf.exp(x),log( _forward(x)导数则为tf.log(tf.exp(x))=x,因此_forward_log_det_jacobian函数的输出已经为x。
--------------------------------------
例子:
class Identity(Bijector): def __init__(self, validate_args=False, name='identity'): super(Identity, self).__init__( is_constant_jacobian=True, validate_args=validate_args, forward_min_event_ndims=0, name=name) def _forward(self, x): return x def _inverse(self, y): return y def _inverse_log_det_jacobian(self, y): return -self._forward_log_det_jacobian(self._inverse(y)) def _forward_log_det_jacobian(self, x): # The full log jacobian determinant would be tf.zero_like(x). # However, we circumvent materializing that, since the jacobian # calculation is input independent, and we specify it for one input. return tf.constant(0., x.dtype)
由于_forward(x)为返回值为x,因此_forward(x)导数为1,tf.log(tf.exp(x))=0.0 。
====================================
我们定义好Bijector的子类对象及其中的_forward函数、_inverse函数、_forward_log_det_jacobian函数,这样就可以通过双射函数一端的概率分布求得另一端的概率分布,比如g(X)=Y,我们知道X的概率分布也就能求得Y的概率密度。
-----------------------------------------------------------
官方文档:
https://tensorflow.google.cn/probability/api_docs/python/tfp/bijectors/Bijector
posted on 2022-12-28 16:52 Angry_Panda 阅读(123) 评论(0) 收藏 举报