test
Δ=b2−4ac$$\Delta=b^2-4ac$$
\[\Delta=b^2-4ac
\]
\[\begin{matrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{matrix}
\]
\[\Delta=b^2-4ac
\]
\[\left[ \begin{array}{cc|c} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right]
\]
$ J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m! \Gamma (m + \alpha + 1)} {\left({ \frac{x}{2} }\right)}^{2m + \alpha} \text {,行内公式示例} $
\[\begin{matrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \end{matrix}
\]
\[\left[ \begin{array}{cc|c} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right]
\]
\[\begin{align} \sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}} \\ & = \sqrt{\frac{73^2}{12^2} \cdot \frac{73^2-1}{73^2}} \\ & = \frac{73}{12} \sqrt{1 - \frac{1}{73^2}} \\ & \approx \frac{73}{12} \left( 1 - \frac{1}{2 \cdot 73^2} \right) \end{align}\\
\]
\[\begin{array}{cc} \mathrm{Bad} &\mathrm{Better} \\ \hline \\ \int\int_S f(x) \, dy \, dx & \iint_S f(x) \, dy \, dx \\ \int\int\int_V f(x) \, dz \, dy \, dx & \iiint_V f(x) \, dz \, dy \, dx \end{array}\\
\]
\[x = a_0 + \frac{1\^2}{a_1+}
\frac{2\^2}{a_2+}
\frac{3\^2}{a_3 +} \frac{4\^4}{a_4 +} \cdots
\]