|
Problem Description
Given a positive integer N, you should output the leftmost digit of N^N.
|
|
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000). |
|
Output
For each test case, you should output the leftmost digit of N^N.
|
|
Sample Input
2 3 4 |
|
Sample Output
2 2 Hint
In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2. In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2. |
分析:将N^N表示为科学计数法:
N^N=a*10^m;
N*log10(N)=log10(a)+m;
a=10^(N*log(N)-m);
同时m即为N^N的位数,如log10(1000)=3,log10(N^N)取整即为m,由此推导出a=10^(N*log(N)-floor(N*log(N)),再对a取整即为所求答案
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
long long N;
long double a,m;
scanf("%I64d",&N);
m=N*log10(N*1.0);
a=pow((long double)10,m-floor(m));
printf("%d\n",(int)a);
}
}