多维标注方法(MDS)简介
在实际中我们会经常遇到这些的问题,给你一组城市,你总能从地图上测出任何一对城市之间的距离。但若给你若干城市的距离,你能否确定这些城市之间的相对位置呢?假定你知道只是哪两个城市最近,哪两个城市次近等等,你是否还能确定它们之间的相对位置呢?假定通过调查了解了10种饮料产品在消费者心中的相似程度,你能否确定这些产品在消费者心理空间中的相对位置呢?在实际中我们常常会遇到类似这样的问题。
多维标度法(MultidimensionalScaling)就是解决这类问题的一种方法,它是一种在低维空间展示“距离”数据结构的多元数据分析技术,简称MDS。
多维标度法解决的问题是:当n个对象(object)中各对对象之间的相似性(或距离)给定时,确定这些对象在低维空间中的表示(感知图PerceptualMapping),并使其尽可能与原先的相似性(或距离)“大体匹配”,使得由降维所引起的任何变形达到最小。多维空间中排列的每一个点代表一个对象,因此点间的距离与对象间的相似性高度相关。也就是说,两个相似的对象由多维空间中两个距离相近的点表示,而两个不相似的对象则由多维空间两个距离较远的点表示。多维空间通常为二维或三维的欧氏空间,但也可以是非欧氏三维以上空间。(具体下篇连载!)
浙公网安备 33010602011771号