摘要:最大熵是自然语言处理中经常用到的一种统计方 法。网上也有很多最大熵方面的工具包,目前大家用得最多的应该是张乐博士写的最大熵工具包了。该工具包既可以采用命令行形式运行,也可以直接调用接口函 数,为大家的研究工作带来了很大的方便。但是,对于刚接触到该工具包的人来说,使用起来还是有些麻烦的。一、命令行形式使用方法 1、利用命令行形式,首先要准备好特征文件。特征文件的格式在最大熵工具包的使用说明书(manual20041229.pdf)的P24。 特征文件中,一行就是一个事件(event),其格式首先是该event对应的类别label,然后是特征feature,两者都是string类型的。如果feat
阅读全文
摘要:经Edwin Chen的推荐,认识了scikit-learn这个非常强大的python机器学习工具包。这个帖子作为笔记。(其实都没有笔记的意义,因为他家文档做的太好了,不过还是为自己记记吧,为以后节省若干分钟)。如果有幸此文被想用scikit-learn的你看见,也还是非常希望你去它们的主页看文档。主页中最值得关注的几个部分:User Guide几乎是machine learning的索引,各种方法如何使用都有,Reference是各个类的用法索引。S1. 导入数据大多数数据的格式都是M个N维向量,分为训练集和测试集。所以,知道如何导入向量(矩阵)数据是最为关键的一点。这里要用到numpy来协
阅读全文
摘要:前文说到使用统计学习方法进行文本分类就是让计算机自己来观察由人提供的训练文档集,自己总结出用于判别文档类别的规则和依据。理想的结果当然是让计算机在理解文章内容的基础上进行这样的分类,然而遗憾的是,我们所说的“理解”往往指的是文章的语义甚至是语用信息,这一类信息极其复杂,抽象,而且存在上下文相关性,对这类信息如何在计算机中表示都是尚未解决的问题更不要说让计算机来理解。利用计算机来解决问题的标准思路应该是:为这种问题寻找一种计算机可以理解的表示方法,或曰建立一个模型(一个文档表示模型);然后基于这个模型,选择各方面满足要求的算法来解决。用谭浩强的话说,程序,就是数据+算法。(啥?你不知道谭浩强是谁
阅读全文
摘要:文本分类问题与其它分类问题没有本质上的区别,其方法可以归结为根据待分类数据的某些特征来进行匹配,当然完全的匹配是不太可能的,因此必须(根据某种评价标准)选择最优的匹配结果,从而完成分类。因此核心的问题便转化为用哪些特征表示一个文本才能保证有效和快速的分类(注意这两方面的需求往往是互相矛盾的)。因此自有文本分类系统的那天起,就一直是对特征的不同选择主导着方法派别的不同。最早的词匹配法仅仅根据文档中是否出现了与类名相同的词(顶多再加入同义词的处理)来判断文档是否属于某个类别。很显然,这种过于简单的方法无法带来良好的分类效果。后来兴起过一段时间的知识工程的方法则借助于专业人员的帮助,为每个类别定义大
阅读全文
摘要:一个文本分类问题就是将一篇文档归入预先定义的几个类别中的一个或几个,而文本的自动分类则是使用计算机程序来实现这样的分类。通俗点说,就好比你拿一篇文章,问计算机这文章要说的究竟是体育,经济还是教育,计算机答不上,说明计算机弱爆了就打它的屁屁。 注意这个定义当中着重强调的两个事实。 第一,用于分类所需要的类别体系是预先确定的。例如新浪新闻的分类体系,Yahoo!网页导航的分类层次。这种分类层次一旦确定,在相当长的时间内都是不可变的,或者即使要变更,也要付出相当大的代价(基本不亚于推倒并重建一个分类系统)。 第二,一篇文档并没有严格规定只能被分配给一个类别。这与分类这个问题的主观性有关,例如...
阅读全文
摘要:统计学习是关于计算机基于数据构建的概率统计模型并运用模型对数据进行预测和分析的一门科学,统计学习也成为统计机器学习。主要特点: 1、统计学习以计算机及网络为平台,是建立在计算机以及网络之上的 2、统计学习以数据为研究对象,是数据驱动的科学 3、统计学习的目的是对数据进行预测和分析 4、统计学习以方法为中心,统计学习方法构建模型并应用模型进行预测和分析 5、统计学习是概率论、统计学、信息论、计算理论、最优化理论和计算机科学等多个领域的交叉学科, 并且在发展中形成独立的理论体系和方法论
阅读全文
摘要:当我们需要对一个随机事件的概率分布进行预测时,我们的预测应当满足全部已知的条件,而对未知的情况不要做任何主观假设。在这种情况下,概率分布最均匀,预测的风险最小。因为这时概率分布的信息熵最大,所以称之为“最大熵法”。最大熵法在数学形式上很漂亮,但是实现起来比较复杂,但把它运用于金融领域的诱惑也比较大,比如说决定股票涨落的因素可能有几十甚至上百种,而最大熵方法恰恰能找到一个同时满足成千上万种不同条件的模型。这里我们先不讨论算法(这里用的是ID3/C4.5),把一棵决策树建立起来再说。我们要建立的决策树的形式类似于“如果天气怎么样,去玩;否则,怎么着怎么着”的树形分叉。那么问题是用哪个属性(即变..
阅读全文
摘要:什么是最大熵熵(entropy)指的是体系的混乱的程度,它在控制论、概率论、数论、天体物理、生命科学等领域都有重要应用,在不同的学科中也有引申出的更为具体的 定义,是各领域十分重要的参量。熵由鲁道夫·克劳修斯(Rudolf Clausius)提出,并应用在热力学中。后来在,克劳德·艾尔伍德·香农(Claude Elwood Shannon)第一次将熵的概念引入到信息论中来。在信息论中,熵表示的是不确定性的量度。信息论的创始人香农在其著作《通信的数学理论》中提出了建立在概率统计模型上的信息度量。他把信息定义为“用来消除不确定性的东西”。最大熵原理是在1957 年由E
阅读全文