leetcode120 - Triangle - medium
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
最后到8的min path,一定经过5,因为5<7, 同样的,最后到1的min path也一定经过5,因为5<6。为了避免像到5的路径这样被重复计算,用dp-通过某些细分来一次性解决一类问题(重复子问题)
dp[i][j]表示从(0,0)到(i,j) 的min path sum。dp[0][0] = trangle[0][0]. 每一行i,最多i个数。对于坐标可以看成,当前位置(i,j)要么从左上方(i-1,j-1)来要么从正上方(i-1,j)来。边界条件最左边那排只能从正上方来,最右边那排只能从左上方来。
优化:dp数组可以降维,从top-down改成从botton-up来解。把最后一行看成是起点,那上面的某行某个node的min path sum就是它本身加上它两个children里小的那个(从小的那个方向来)。那就一行行往上算就好了,dp就存当前这行的结果(dp[j] = min(dp[j], dp[j+1])+triangle[i][j],RHS里的dp还是下面那行的,然后逐渐被替换成现在这行的),边界条件都省去了,最后结果就存在三角形顶端。
实现:
class Solution { public: int minimumTotal(vector<vector<int>>& triangle) { int n = triangle.size(); vector<vector<int>> dp(n, vector<int>(n, INT_MAX)); dp[0][0] = triangle[0][0]; for (int i=1; i<n; i++){ for (int j=0; j<=i; j++){ if (j == 0) dp[i][j] = dp[i-1][j] + triangle[i][j]; else if ( j == i) dp[i][j] = dp[i-1][j-1] + triangle[i][j]; else dp[i][j] = min(dp[i-1][j-1]+triangle[i][j], dp[i-1][j]+triangle[i][j]); } } return *min_element(dp[n-1].begin(), dp[n-1].end()); } };
优化:
class Solution { public: int minimumTotal(vector<vector<int>>& triangle) { int n = triangle.size(); vector<int> dp(triangle.back()); for (int i=n-2; i>=0; i--){ for (int j=0; j<=i; j++){ dp[j] = min(dp[j], dp[j+1])+triangle[i][j]; } } return dp[0]; } };

浙公网安备 33010602011771号