leetcode62 - Unique Paths - medium
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid.
How many possible unique paths are there?
Example 1:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Right -> Down 2. Right -> Down -> Right 3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3 Output: 28
Constraints:
1 <= m, n <= 100- It's guaranteed that the answer will be less than or equal to
2 * 10 ^ 9.
如果用一个二维数组,dp[i][j]记录number of unique paths to arrive at the point
(i, j),那么space complexity是O(m*n),这里可以有一个优化,因为每次操作我们只会用到当前行和前一行,那用两个一维数组就够了,只对cur这个数组进行更新,操作完到下一行的时候,swap它们,后续要用到的数据就在prev里,cur里的数据继续被覆盖,直到扫完整个grid,最后返回的是prev[n-1],space complexity可以到O(n)。
实现:
class Solution { public: int uniquePaths(int m, int n) { vector<vector<int>> dp(m, vector<int>(n, 0)); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (i == 0 || j == 0) dp[i][j] = 1; else dp[i][j] = dp[i-1][j] + dp[i][j-1]; } } return dp[m-1][n-1]; } };
优化:
class Solution { public: int uniquePaths(int m, int n) { vector<int> pre(n, 1), cur(n, 0); cur[0] = 1; for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { cur[j] = pre[j] + cur[j-1]; } swap(pre, cur); } return pre[n-1]; } };

浙公网安备 33010602011771号