inbatch softmax loss 代码实现
def inbatch_softmax_loss(user_pred_vector, item_pred_vector, item_id, labels): labels = tf.linalg.diag(tf.reshape(tf.ones_like(labels),[-1])) diff = tf.expand_dims(item_id,-1) - tf.expand_dims(item_id,0) + labels same_mask = tf.where(tf.math.abs(diff) < 0.5,tf.zeros_like(diff,dtype=tf.float32),tf.ones_like(diff,dtype=tf.float32)) logits = tf.matmul(user_pred_vector,item_pred_vector,transpose_b=True) return tf.losses.softmax_cross_entropy(labels,logits,label_smoothing = 0.05)

浙公网安备 33010602011771号