快速切题 sgu117. Counting 分解质因数
117. Counting
time limit per test: 0.25 sec.
memory limit per test: 4096 KB
Find amount of numbers for given sequence of integer numbers such that after raising them to the M-th power they will be divided by K.
Input
Input consists of two lines. There are three integer numbers N, M, K (0<N, M, K<10001) on the first line. There are N positive integer numbers − given sequence (each number is not more than 10001) − on the second line.
Output
Write answer for given task.
Sample Input
4 2 50 9 10 11 12
Sample Output
1
用时:30min
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int maxnum=10001;
bool isntprime[maxnum];
int prime[maxnum],cnt;
int divide[maxnum][15],num[maxnum],len[maxnum][15];//divide[i][j]为分解i得到的第j个质数 len[i][j]为分解i得到的第j个质数在i中出现的次数 num[i]为分解i得到的质因数个数
int n,m,k;
void calc(){
cnt=0;
for(int i=2;i<maxnum;i++){
if(!isntprime[i]){
prime[cnt++]=i;
divide[i][0]=i;
num[i]=1;
len[i][0]=1;
for(int j=i+i;j<maxnum;j+=i){
isntprime[j]=true;
divide[j][num[j]]=i;
int tmp=j;
while(tmp%i==0){
tmp/=i;
len[j][num[j]]++;
}
num[j]++;
}
}
}
}
int main(){
calc();
scanf("%d%d%d",&n,&m,&k);
if(k==1){printf("%d",n);return 0;}
int ans=0;
for(int i=0;i<n;i++){
int tmp;
scanf("%d",&tmp);
bool fl=true;
for(int j=0;j<num[k];j++){
int fnd=(lower_bound(divide[tmp],divide[tmp]+num[tmp],divide[k][j]))-divide[tmp];
if(fnd>=num[tmp]){fl=false;break;}
if(divide[tmp][fnd]!=divide[k][j]){fl=false;break;}
if(len[tmp][fnd]*m<len[k][j]){fl=false;break;}
}
if(fl)ans++;
}
printf("%d\n",ans);
return 0;
}

浙公网安备 33010602011771号