异常检测-1-综述-Deep Learning for Anomaly Detection: A Survey

时序数据的深度异常检测模型,主要有CNN, RNN, LSTM



时序数据的异常检测:
Table 15: Examples of DAD techniques used in industrial operations.
- CNN: Convolution Neural Networks
- LSTM : Long Short Term Memory Networks
- GRU: Gated Recurrent Unit
- DNN : Deep Neural Networks
- AE: Autoencoders
- DAE: Denoising Autoencoders
- SVM: Support Vector Machines
- SDAE: Stacked Denoising Autoencoders
- RNN : Recurrent Neural Networks.
- DNN-SVM:Hybrid Models
Table 16: Examples of DAD techniques used in time series data.
- CNN: Convolution Neural Networks,
- GAN: Generative Adversarial networks,
- LSTM : Long Short Term Memory Networks
- GRU: Gated Recurrent Unit,
- DNN : Deep Neural Networks,
- AE: Autoencoders,
- DAE: Denoising Autoencoders,
- VAE: Variational Autoencoder
- SDAE: Stacked Denoising Autoencoders
浙公网安备 33010602011771号