泰勒公式
推导
设 \(f(x)\) 在 \(x_0\) 处具有 \(n\) 阶导数,设关于 \(x-x_0\) 的 \(n\) 次多项式
\[p_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots + a_n(x- x_0)^n
\]
要求用 \(p_n(x)\) 近似表达 \(f(x)\),且 \(p_n(x) = f(x) + o((x - x_0)^n)\)。
考虑近似准则:对于一个函数曲线,要得到其「好的近似」,则对于定义域上某点 \(x_0\),要求位置相同 \(f(x_0) = p_n(x_0)\)(\(0\) 阶近似),趋势(斜率)相同 \(f'(x_0) = p'_n(x_0)\)(二阶近似),弯曲程度(凹凸程度)相同 \(f''(x_0) = p''_n(x_0)\) ……即对于一个好的近似,我们需满足函数重合、变化趋势相同、变化趋势的变化趋势相同……
那么 \(n\) 阶近似即满足
\[\begin{cases}
p_n(x_0) = f(x_0)\\
p'_n(x_0) = f'(x_0)\\
p''_n(x_0) = f''(x_0)\\
\vdots\\
p^{(n)}(x_0) = f^{(n)}(x_0)
\end{cases}
\]
考虑通过以上等式来求多项式 \(p_n(x)\) 的系数 \(a_0,a_1,a_2,\cdots,a_n\)。
对 \(p_n(x)\) 各式求导,并代入上述等式,得
\[p_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \cdots + a_n(x - x_0)^n \Longrightarrow p_n(x_0) = a_0 = f(x_0)\\
p'_n(x) = a_1 + 2a_2(x - x_0) + 3a_3 (x - x_0)^2 + \cdots + na_n(x - x_0)^{n-1} \Longrightarrow p'_n(x_0) = a_1 = f'(x_0)\\\
p''_n(x) = 2!a_2 + 3\cdot 2(x-x_0) + \cdots + n(n-1)a_n(x - x_0)^{n-2} \Longrightarrow p''_n(x_0) = 2!a_2 = f''(x_0) \\
\vdots\\
p^{(n)}_n(x) = n!a_n \Longrightarrow p^{(n)}(x_0) = n!a_n = f^{(n)}(x_0)
\]
所以
\[\begin{cases}
a_0 = f(x_0)\\
a_1 = f'(x_0)\\
a_2 = \dfrac{f''(x_0)}{2!}\\
\vdots\\
a_n = \dfrac{f^{(n)}(x_0)}{n!}
\end{cases}
\]
代入 \(p_n(x)\) 的多项式表达式中得:
\[\boxed
{p_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dfrac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \dfrac{f^{(n)}(x_0)}{n!}(x- x_0)^n}
\]
从而得到了近似拟合任意函数 \(f(x)\) 的多项式 \(p_n(x)\)。
考虑证明 $$p_n(x) = f(x) + o((x - x_0)^n)$$。
记
\[R_n(x) = f(x) - p_n(x)
\]
则
\[R_n(x) = R'_n(x) = R''_n(x) = \cdots = R^{(n)}_n(x_0) = 0
\]
那么有
\[\dfrac{R_n(x)}{(x - x_0)^{n+1}} = \dfrac{R_n(x) - R_n(x_0)}{(x - x_0)^{n+1} - 0}
\]
根据 柯西中值定理 可知,对 \(\forall~ \xi_1 \in (x_0,x)\) 有
\[\begin{aligned}
\dfrac{R_n(x) - R_n(x_0)}{(x - x_0)^{n+1} - 0} & = \dfrac{R'_n(\xi_1)}{(n + 1)(x - x_0)^n}\\
& = \dfrac{R'_n(\xi_1) - R'_n(x_0)}{(n + 1)(x - x_0)^n - 0}\\
& = \dfrac{R''_n(\xi_2)}{n(n+1)(x - x_0)^n} \\
& = \cdots\\
& = \dfrac{R^{(n)}_n(\xi_n) - R^{(n)}_n(x_0)}{n!(x - x_0)^n - 0}\\
& = \dfrac{R^{(n + 1)}_n (\xi)}{(n + 1)!}
\end{aligned}
\]
即
\[\dfrac{R_n(x)}{(x - x_0)^{n+1}} = \dfrac{R^{(n + 1)}_n (\xi)}{(n + 1)!}
\]
其中 \(\xi \in (x_0,x)\)。
又由于 \(R^{(n + 1)}_n (\xi) = f^{(n + 1)}_n (\xi) - p^{(n + 1)}_n (\xi) = f_n^{(n + 1)} ( \xi )\)。
所以
\[\dfrac{R_n(x)}{(x - x_0)^{n+1}} = \dfrac{f_n^{(n + 1)}(\xi)}{(n + 1)!} \iff R_n(x) = \dfrac{f_n^{(n + 1)}(\xi)}{(n + 1)!} (x - x_0)^{n + 1}
\]
当在 \(x_0\) 的某邻域内 \(|f^{(n+1)}(x)|\le M\) 时,有
\[|R_n(x)| \le \dfrac{M}{(n+1)!}|x - x_0|^{n+1} \Longrightarrow R_n(x) = o((x - x_0)^n)(x \to x_0)
\]
\(o((x - x_0)^n)\) 一般称为 佩亚诺余项,$ \dfrac{f_n^{(n + 1)}(\xi)}{(n + 1)!} (x - x_0)^{n + 1}$ 称为 拉格朗日余项。
所以我们得到 泰勒公式
\[\boxed
{
f(x) = f(x_0) + f'(x_0) (x - x_0) + \dfrac{f''(x_0)}{2!} (x - x_0)^2 + \cdots + \dfrac{f^{(n)}(x_0)}{n!} (x - x_0)^n + R_n(x)
}
\]
其中
\[R_n (x) = o((x - x_0)^n) = \dfrac{f^{(n + 1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}
\]
其中 \(\xi \in (x_0,x)\)。
推论——麦克劳林公式
在泰勒公式中,取 \(x_0 = 0\),则可以得到带有 佩亚诺余项 的 麦克劳林公式:
\[\boxed
{
f(x) = f(0) + f'(0)x + \dfrac{f''(0)}{2!}x^2 + \cdots + \dfrac{f^{(n)}(0)}{n!}x^n + o(x^n)
}
\]
此时 \(\xi \in (0,x)\),令 \(\xi = \theta x(0 < \theta < 1)\),可以得到带有 拉格朗日余项 的 麦克劳林公式:
\[\boxed
{
f(x) = f(0) + f'(0)x + \dfrac{f''(0)}{2!}x^2 + \cdots + \dfrac{f^{(n)}(0)}{n!}x^n + \dfrac{f^{(n + 1)}(\theta x)}{(n + 1)!} x^{n + 1}( 0 < \theta < 1)
}
\]
近似公式:
\[f(x) \approx f(0) + f'(0)x + \dfrac{f''(0)}{2!}x^2 + \cdots + \dfrac{f^{(n)}(0)}{n!}x^n
\]
误差估计式:
\[|R_n(x)| \le \dfrac{M}{(n + 1)!} |x|^{n + 1}
\]