剑指 Offer 42. 连续子数组的最大和
题目描述
输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为\(O(n)\)。
示例1:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
提示:
1 <= arr.length <= 10^5
-100 <= arr[i] <= 100
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/lian-xu-zi-shu-zu-de-zui-da-he-lcof
代码实现
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n = nums.size();
        vector<int> max_sum;
        max_sum.push_back(nums[0]);
        for (unsigned int i = 1; i < nums.size(); i++)
            max_sum.push_back((max_sum[i - 1] > 0) ? (max_sum[i - 1] + nums[i] : nums[i]);
        int max = -101;
        for (unsigned int i = 0; i < max_sum.size(); i++)
            max = (max > max_sum[i]) ? max : max_sum[i];
        return max;
    }
};
思路解析
- max_sum[i]以- nums[i]为结尾的连续子数组最大和。
- max_sum[0] = nums[0]
- max_sum[i] = (max_sum[i - 1] > 0) ? (max_sum[i - 1] + nums[i] : nums[i]
时间复杂度\(O(n)\),空间复杂度\(O(n)\)。

 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号