HDU_1061:Rightmost Digit
2015-04-09 22:49 星星之火✨🔥 阅读(252) 评论(0) 收藏 举报Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2
3
4
Sample Output
7 6
Hint
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.最先想到的是一个一个算,但是由于数据范围太大,O(n^2)的时间复杂度对于n = 10亿时,10亿^10亿次乘法运算实在是不能忍受的。因此下面的程序超时(Time Limit Exceeded)。
#include<stdio.h>
int main(void)
{
int cases, n, copy_n, result;
scanf("%d", &cases);
while(cases--)
{
scanf("%d", &n);
copy_n = n;
n = n%10;
result = 1;
while(copy_n--)
{
result = (result*n)%10;
}
printf("%d\n", result);
}
return 0;
}
下面,快速幂一来就AC了:
#include<stdio.h>
int my_power(int m, int n); // 求m的n次方的尾数
int main(void)
{
int cases, n;
scanf("%d", &cases);
while(cases--)
{
scanf("%d", &n);
printf("%d\n", my_power(n, n));
}
return 0;
}
int my_power(int m, int n)
{
m = m%10;
if(n == 1)
return m;
if(n%2 == 0)
return ( my_power(m*m, n/2) ) % 10;
else
return ( my_power(m*m, n/2)*m ) % 10;
}
可以看到,快速幂的时间复杂度是O(logn),n = 10亿时,大约32次递归调用就能出结果,效率极大的提高了。