Fork me on GitHub
上一页 1 ··· 30 31 32 33 34 35 36 37 38 ··· 119 下一页
摘要: 可以使用以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。 对于顺序结构的模型,优先使用Sequential方法构建。 如果模型有多输入或者多输出,或者模型需要共享权重,或者模型具有残差连接等非顺序结构,推荐使用函数式 阅读全文
posted @ 2020-04-13 11:43 西西嘛呦 阅读(5339) 评论(7) 推荐(0)
摘要: tf.keras的回调函数实际上是一个类,一般是在model.fit时作为参数指定,用于控制在训练过程开始或者在训练过程结束,在每个epoch训练开始或者训练结束,在每个batch训练开始或者训练结束时执行一些操作,例如收集一些日志信息,改变学习率等超参数,提前终止训练过程等等。 同样地,针对mod 阅读全文
posted @ 2020-04-13 10:54 西西嘛呦 阅读(2749) 评论(0) 推荐(0)
摘要: 机器学习界有一群炼丹师,他们每天的日常是: 拿来药材(数据),架起八卦炉(模型),点着六味真火(优化算法),就摇着蒲扇等着丹药出炉了。 不过,当过厨子的都知道,同样的食材,同样的菜谱,但火候不一样了,这出来的口味可是千差万别。火小了夹生,火大了易糊,火不匀则半生半糊。 机器学习也是一样,模型优化算法 阅读全文
posted @ 2020-04-13 10:52 西西嘛呦 阅读(4511) 评论(0) 推荐(0)
摘要: 损失函数除了作为模型训练时候的优化目标,也能够作为模型好坏的一种评价指标。但通常人们还会从其它角度评估模型的好坏。 这就是评估指标。通常损失函数都可以作为评估指标,如MAE,MSE,CategoricalCrossentropy等也是常用的评估指标。 但评估指标不一定可以作为损失函数,例如AUC,A 阅读全文
posted @ 2020-04-13 10:48 西西嘛呦 阅读(9966) 评论(0) 推荐(2)
摘要: 一般来说,监督学习的目标函数由损失函数和正则化项组成。(Objective = Loss + Regularization) 对于keras模型,目标函数中的正则化项一般在各层中指定,例如使用Dense的 kernel_regularizer 和 bias_regularizer等参数指定权重使用l 阅读全文
posted @ 2020-04-13 10:44 西西嘛呦 阅读(5229) 评论(16) 推荐(1)
摘要: 深度学习模型一般由各种模型层组合而成。 tf.keras.layers内置了非常丰富的各种功能的模型层。例如, layers.Dense,layers.Flatten,layers.Input,layers.DenseFeature,layers.Dropout layers.Conv2D,laye 阅读全文
posted @ 2020-04-13 10:40 西西嘛呦 阅读(4250) 评论(0) 推荐(2)
摘要: 激活函数在深度学习中扮演着非常重要的角色,它给网络赋予了非线性,从而使得神经网络能够拟合任意复杂的函数。 如果没有激活函数,无论多复杂的网络,都等价于单一的线性变换,无法对非线性函数进行拟合。 目前,深度学习中最流行的激活函数为 relu, 但也有些新推出的激活函数,例如 swish、GELU 据称 阅读全文
posted @ 2020-04-13 10:34 西西嘛呦 阅读(2772) 评论(0) 推荐(0)
摘要: 特征列 通常用于对结构化数据实施特征工程时候使用,图像或者文本数据一般不会用到特征列。 一,特征列用法概述 使用特征列可以将类别特征转换为one-hot编码特征,将连续特征构建分桶特征,以及对多个特征生成交叉特征等等。 要创建特征列,请调用 tf.feature_column 模块的函数。该模块中常 阅读全文
posted @ 2020-04-13 10:31 西西嘛呦 阅读(3069) 评论(0) 推荐(0)
摘要: 如果需要训练的数据大小不大,例如不到1G,那么可以直接全部读入内存中进行训练,这样一般效率最高。 但如果需要训练的数据很大,例如超过10G,无法一次载入内存,那么通常需要在训练的过程中分批逐渐读入。 使用 tf.data API 可以构建数据输入管道,轻松处理大量的数据,不同的数据格式,以及不同的数 阅读全文
posted @ 2020-04-12 17:10 西西嘛呦 阅读(1102) 评论(0) 推荐(0)
摘要: 有三种计算图的构建方式:静态计算图,动态计算图,以及Autograph。 TensorFlow 2.0主要使用的是动态计算图和Autograph。 动态计算图易于调试,编码效率较高,但执行效率偏低。 静态计算图执行效率很高,但较难调试。 而Autograph机制可以将动态图转换成静态计算图,兼收执行 阅读全文
posted @ 2020-04-11 10:57 西西嘛呦 阅读(1357) 评论(0) 推荐(1)
上一页 1 ··· 30 31 32 33 34 35 36 37 38 ··· 119 下一页