Fork me on GitHub

【猫狗数据集】划分验证集并边训练边验证

数据集下载地址:

链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw
提取码:2xq4

创建数据集:https://www.cnblogs.com/xiximayou/p/12398285.html

读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html

进行训练:https://www.cnblogs.com/xiximayou/p/12448300.html

保存模型并继续进行训练:https://www.cnblogs.com/xiximayou/p/12452624.html

加载保存的模型并测试:https://www.cnblogs.com/xiximayou/p/12459499.html

epoch、batchsize、step之间的关系:https://www.cnblogs.com/xiximayou/p/12405485.html

 

一般来说,数据集都会被划分为三个部分:训练集、验证集和测试集。其中验证集主要是在训练的过程中观察整个网络的训练情况,避免过拟合等等。

之前我们有了训练集:20250张,测试集:4750张。本节我们要从训练集中划分出一部分数据充当验证集。

之前是在windows下进行划分的,接下来我们要在谷歌colab中进行操作。在utils新建一个文件split.py

import random
import os
import shutil
import glob
path='/content/drive/My Drive/colab notebooks/data/dogcat'
train_path=path+'/train'
val_path=path+'/val'
test_path=path+'/test'


def split_train_test(fileDir,tarDir):
  if not os.path.exists(tarDir):
      os.makedirs(tarDir)
  pathDir = os.listdir(fileDir)    #取图片的原始路径
  filenumber=len(pathDir)
  rate=0.1    #自定义抽取图片的比例,比方说100张抽10张,那就是0.1
  picknumber=int(filenumber*rate) #按照rate比例从文件夹中取一定数量图片
  sample = random.sample(pathDir, picknumber)  #随机选取picknumber数量的样本图片
  print("=========开始移动图片============")
  for name in sample:
    shutil.move(fileDir+name, tarDir+name)
  print("=========移动图片完成============")
split_train_test(train_path+'/dog/',val_path+'/dog/')  
split_train_test(train_path+'/cat/',val_path+'/cat/')  

print("验证集狗共:{}张图片".format(len(glob.glob(val_path+"/dog/*.jpg"))))
print("验证集猫共:{}张图片".format(len(glob.glob(val_path+"/cat/*.jpg"))))
print("训练集狗共:{}张图片".format(len(glob.glob(train_path+"/dog/*.jpg"))))
print("训练集猫共:{}张图片".format(len(glob.glob(train_path+"/cat/*.jpg"))))
print("测试集狗共:{}张图片".format(len(glob.glob(test_path+"/dog/*.jpg"))))
print("测试集猫共:{}张图片".format(len(glob.glob(test_path+"/cat/*.jpg"))))

运行结果:

测试集是正确的,训练集和验证集和我们预想的咋不一样?可能谷歌colab不太稳定,造成数据的丢失。就这样吧,目前我们有这么多数据总不会错了,这回数据量总不会再变了吧。

为了方便起见,我们再在train目录下新建一个main.py用于统一处理:

 main.py

import sys
sys.path.append("/content/drive/My Drive/colab notebooks")
from utils import rdata
from model import resnet
import torch.nn as nn
import torch
import numpy as np
import torchvision
import train

np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)

torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

batch_size=128
train_loader,val_loader,test_loader=rdata.load_dataset(batch_size)

model =torchvision.models.resnet18(pretrained=False)
model.fc = nn.Linear(model.fc.in_features,2,bias=False)
model.cuda()


#定义训练的epochs
num_epochs=2
#定义学习率
learning_rate=0.01
#定义损失函数
criterion=nn.CrossEntropyLoss()
#定义优化方法,简单起见,就是用带动量的随机梯度下降
optimizer = torch.optim.SGD(params=model.parameters(), lr=0.1, momentum=0.9,
                          weight_decay=1*1e-4)
print("训练集有:",len(train_loader.dataset))
print("验证集有:",len(val_loader.dataset))
def main():
  trainer=train.Trainer(criterion,optimizer,model)
  trainer.loop(num_epochs,train_loader,val_loader)
  
main()

然后是修改了train.py中的代码

import torch
class Trainer:
  def __init__(self,criterion,optimizer,model):
    self.criterion=criterion
    self.optimizer=optimizer
    self.model=model

  def loop(self,num_epochs,train_loader,val_loader):
    for epoch in range(1,num_epochs+1):
      self.train(train_loader,epoch,num_epochs)
      self.val(val_loader,epoch,num_epochs)

  def train(self,dataloader,epoch,num_epochs):
    self.model.train()
    with torch.enable_grad():
      self._iteration_train(dataloader,epoch,num_epochs)

  def val(self,dataloader,epoch,num_epochs):
    self.model.eval()
    with torch.no_grad():
      self._iteration_val(dataloader,epoch,num_epochs)

  def _iteration_train(self,dataloader,epoch,num_epochs):
    total_step=len(dataloader)
    tot_loss = 0.0
    correct = 0
    for i ,(images, labels) in enumerate(dataloader):
      images = images.cuda()
      labels = labels.cuda()

      # Forward pass
      outputs = self.model(images)
      _, preds = torch.max(outputs.data,1)
      loss = self.criterion(outputs, labels)

      # Backward and optimizer
      self.optimizer.zero_grad()
      loss.backward()
      self.optimizer.step()
      tot_loss += loss.data
      if (i+1) % 2 == 0:
          print('Epoch: [{}/{}], Step: [{}/{}], Loss: {:.4f}'
                .format(epoch, num_epochs, i+1, total_step, loss.item()))
      correct += torch.sum(preds == labels.data).to(torch.float32)
    ### Epoch info ####
    epoch_loss = tot_loss/len(dataloader.dataset)
    print('train loss: {:.4f}'.format(epoch_loss))
    epoch_acc = correct/len(dataloader.dataset)
    print('train acc: {:.4f}'.format(epoch_acc))
    if epoch%2==0:
      state = { 
        'model': self.model.state_dict(), 
        'optimizer':self.optimizer.state_dict(), 
        'epoch': epoch,
        'train_loss':epoch_loss,
        'train_acc':epoch_acc,
      }
      save_path="/content/drive/My Drive/colab notebooks/output/"   
      torch.save(state,save_path+"/"+"epoch"+str(epoch)+"-resnet18-2"+".t7")
  def _iteration_val(self,dataloader,epoch,num_epochs):
    total_step=len(dataloader)
    tot_loss = 0.0
    correct = 0
    for i ,(images, labels) in enumerate(dataloader):
        images = images.cuda()
        labels = labels.cuda()

        # Forward pass
        outputs = self.model(images)
        _, preds = torch.max(outputs.data,1)
        loss = self.criterion(outputs, labels)
        tot_loss += loss.data
        correct += torch.sum(preds == labels.data).to(torch.float32)
        if (i+1) % 2 == 0:
            print('Epoch: [{}/{}], Step: [{}/{}], Loss: {:.4f}'
                  .format(1, 1, i+1, total_step, loss.item()))
    ### Epoch info ####
    epoch_loss = tot_loss/len(dataloader.dataset)
    print('val loss: {:.4f}'.format(epoch_loss))
    epoch_acc = correct/len(dataloader.dataset)
    print('val acc: {:.4f}'.format(epoch_acc))

在训练时是model.train(),同时将代码放在with torch.enable_grad()中。验证时是model.eval(),同时将代码放在with torch.no_grad()中。我们可以通过观察验证集的损失、准确率和训练集的损失、准确率进行相应的调参工作,主要是为了避免过拟合。我们设定每隔2个epoch就保存一次训练的模型。

读取数据的代码我们也要做出相应的修改了:rdata.py

from torch.utils.data import DataLoader
import torchvision
import torchvision.transforms as transforms
import torch

def load_dataset(batch_size):
  #预处理
  train_transform = transforms.Compose([transforms.RandomResizedCrop(224),transforms.ToTensor()])
  val_transform = transforms.Compose([transforms.Resize((224,224)),transforms.ToTensor()])
  test_transform = transforms.Compose([transforms.Resize((224,224)),transforms.ToTensor()])
  path = "/content/drive/My Drive/colab notebooks/data/dogcat"
  train_path=path+"/train"
  test_path=path+"/test"
  val_path=path+'/val'
  #使用torchvision.datasets.ImageFolder读取数据集指定train和test文件夹
  train_data = torchvision.datasets.ImageFolder(train_path, transform=train_transform)
  train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=6)

  val_data = torchvision.datasets.ImageFolder(val_path, transform=val_transform)
  val_loader = DataLoader(val_data, batch_size=batch_size, shuffle=True, num_workers=6)
  
  test_data = torchvision.datasets.ImageFolder(test_path, transform=test_transform)
  test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=True, num_workers=6)
  """
  print(train_data.classes)  #根据分的文件夹的名字来确定的类别
  print(train_data.class_to_idx) #按顺序为这些类别定义索引为0,1...
  print(train_data.imgs) #返回从所有文件夹中得到的图片的路径以及其类别

  print(test_data.classes)  #根据分的文件夹的名字来确定的类别
  print(test_data.class_to_idx) #按顺序为这些类别定义索引为0,1...
  print(test_data.imgs) #返回从所有文件夹中得到的图片的路径以及其类别
  """
  return train_loader,val_loader,test_loader

这里我们将batch_size当作参数进行传入,同时修改了num_works=6(难怪之前第一个epoch训练测试那么慢),然后对于验证和测试,数据增强方式与训练的时候就会不一致了,为了保持原图像,因此不能进行切割为224,而是要讲图像调整为224×224.。最后返回三个dataloader就行了,因为可以从dataloader.dataset可以获取到数据的容量大小。

最终结果:

为了再避免数据丢失的问题,我们开始的时候就打印出数据集的大小:

训练集有: 18255
验证集有: 2027
Epoch: [1/2], Step: [2/143], Loss: 2.1346
Epoch: [1/2], Step: [4/143], Loss: 4.8034
Epoch: [1/2], Step: [6/143], Loss: 8.4806
Epoch: [1/2], Step: [8/143], Loss: 3.1965
Epoch: [1/2], Step: [10/143], Loss: 1.9405
Epoch: [1/2], Step: [12/143], Loss: 1.8245
Epoch: [1/2], Step: [14/143], Loss: 1.0050
Epoch: [1/2], Step: [16/143], Loss: 0.7030
Epoch: [1/2], Step: [18/143], Loss: 0.8176
Epoch: [1/2], Step: [20/143], Loss: 0.7163
Epoch: [1/2], Step: [22/143], Loss: 1.1955
Epoch: [1/2], Step: [24/143], Loss: 0.7395
Epoch: [1/2], Step: [26/143], Loss: 0.8374
Epoch: [1/2], Step: [28/143], Loss: 1.0237
Epoch: [1/2], Step: [30/143], Loss: 0.7225
Epoch: [1/2], Step: [32/143], Loss: 0.7724
Epoch: [1/2], Step: [34/143], Loss: 1.0290
Epoch: [1/2], Step: [36/143], Loss: 0.8630
Epoch: [1/2], Step: [38/143], Loss: 0.6931
Epoch: [1/2], Step: [40/143], Loss: 0.8261
Epoch: [1/2], Step: [42/143], Loss: 0.6834
Epoch: [1/2], Step: [44/143], Loss: 0.7619
Epoch: [1/2], Step: [46/143], Loss: 0.6832
Epoch: [1/2], Step: [48/143], Loss: 0.7108
Epoch: [1/2], Step: [50/143], Loss: 0.9719
Epoch: [1/2], Step: [52/143], Loss: 0.8093
Epoch: [1/2], Step: [54/143], Loss: 0.8441
Epoch: [1/2], Step: [56/143], Loss: 0.9111
Epoch: [1/2], Step: [58/143], Loss: 0.6936
Epoch: [1/2], Step: [60/143], Loss: 0.8592
Epoch: [1/2], Step: [62/143], Loss: 0.7161
Epoch: [1/2], Step: [64/143], Loss: 0.6975
Epoch: [1/2], Step: [66/143], Loss: 0.6932
Epoch: [1/2], Step: [68/143], Loss: 1.1292
Epoch: [1/2], Step: [70/143], Loss: 0.8269
Epoch: [1/2], Step: [72/143], Loss: 0.7343
Epoch: [1/2], Step: [74/143], Loss: 0.6779
Epoch: [1/2], Step: [76/143], Loss: 0.8384
Epoch: [1/2], Step: [78/143], Loss: 0.7054
Epoch: [1/2], Step: [80/143], Loss: 0.7532
Epoch: [1/2], Step: [82/143], Loss: 0.7620
Epoch: [1/2], Step: [84/143], Loss: 0.7220
Epoch: [1/2], Step: [86/143], Loss: 0.8249
Epoch: [1/2], Step: [88/143], Loss: 0.7050
Epoch: [1/2], Step: [90/143], Loss: 0.7757
Epoch: [1/2], Step: [92/143], Loss: 0.6918
Epoch: [1/2], Step: [94/143], Loss: 0.6893
Epoch: [1/2], Step: [96/143], Loss: 0.7105
Epoch: [1/2], Step: [98/143], Loss: 0.7681
Epoch: [1/2], Step: [100/143], Loss: 0.7826
Epoch: [1/2], Step: [102/143], Loss: 0.6986
Epoch: [1/2], Step: [104/143], Loss: 0.7252
Epoch: [1/2], Step: [106/143], Loss: 0.6829
Epoch: [1/2], Step: [108/143], Loss: 0.6872
Epoch: [1/2], Step: [110/143], Loss: 0.6776
Epoch: [1/2], Step: [112/143], Loss: 0.7574
Epoch: [1/2], Step: [114/143], Loss: 0.7412
Epoch: [1/2], Step: [116/143], Loss: 0.6889
Epoch: [1/2], Step: [118/143], Loss: 0.7476
Epoch: [1/2], Step: [120/143], Loss: 0.6999
Epoch: [1/2], Step: [122/143], Loss: 0.6735
Epoch: [1/2], Step: [124/143], Loss: 0.6929
Epoch: [1/2], Step: [126/143], Loss: 0.6859
Epoch: [1/2], Step: [128/143], Loss: 0.6791
Epoch: [1/2], Step: [130/143], Loss: 0.6922
Epoch: [1/2], Step: [132/143], Loss: 0.7641
Epoch: [1/2], Step: [134/143], Loss: 0.6894
Epoch: [1/2], Step: [136/143], Loss: 0.7030
Epoch: [1/2], Step: [138/143], Loss: 0.6968
Epoch: [1/2], Step: [140/143], Loss: 0.7000
Epoch: [1/2], Step: [142/143], Loss: 0.7290
train loss: 0.0087
train acc: 0.5054
Epoch: [1/1], Step: [2/16], Loss: 0.6934
Epoch: [1/1], Step: [4/16], Loss: 0.6854
Epoch: [1/1], Step: [6/16], Loss: 0.6950
Epoch: [1/1], Step: [8/16], Loss: 0.6894
Epoch: [1/1], Step: [10/16], Loss: 0.6976
Epoch: [1/1], Step: [12/16], Loss: 0.7385
Epoch: [1/1], Step: [14/16], Loss: 0.7118
Epoch: [1/1], Step: [16/16], Loss: 0.7297
val loss: 0.0056
val acc: 0.5067
Epoch: [2/2], Step: [2/143], Loss: 0.7109
Epoch: [2/2], Step: [4/143], Loss: 0.7193
Epoch: [2/2], Step: [6/143], Loss: 0.6891
Epoch: [2/2], Step: [8/143], Loss: 0.6872
Epoch: [2/2], Step: [10/143], Loss: 0.7610
Epoch: [2/2], Step: [12/143], Loss: 0.7611
Epoch: [2/2], Step: [14/143], Loss: 0.7238
Epoch: [2/2], Step: [16/143], Loss: 0.7438
Epoch: [2/2], Step: [18/143], Loss: 0.7789
Epoch: [2/2], Step: [20/143], Loss: 0.7210
Epoch: [2/2], Step: [22/143], Loss: 0.8573
Epoch: [2/2], Step: [24/143], Loss: 0.7694
Epoch: [2/2], Step: [26/143], Loss: 0.7205
Epoch: [2/2], Step: [28/143], Loss: 0.7020
Epoch: [2/2], Step: [30/143], Loss: 0.7191
Epoch: [2/2], Step: [32/143], Loss: 0.7582
Epoch: [2/2], Step: [34/143], Loss: 0.7804
Epoch: [2/2], Step: [36/143], Loss: 0.6864
Epoch: [2/2], Step: [38/143], Loss: 0.6800
Epoch: [2/2], Step: [40/143], Loss: 0.7184
Epoch: [2/2], Step: [42/143], Loss: 0.7476
Epoch: [2/2], Step: [44/143], Loss: 0.6939
Epoch: [2/2], Step: [46/143], Loss: 0.7176
Epoch: [2/2], Step: [48/143], Loss: 0.6927
Epoch: [2/2], Step: [50/143], Loss: 0.7282
Epoch: [2/2], Step: [52/143], Loss: 0.7118
Epoch: [2/2], Step: [54/143], Loss: 0.6974
Epoch: [2/2], Step: [56/143], Loss: 0.7058
Epoch: [2/2], Step: [58/143], Loss: 0.6776
Epoch: [2/2], Step: [60/143], Loss: 0.7171
Epoch: [2/2], Step: [62/143], Loss: 0.7013
Epoch: [2/2], Step: [64/143], Loss: 0.7390
Epoch: [2/2], Step: [66/143], Loss: 0.7126
Epoch: [2/2], Step: [68/143], Loss: 0.6957
Epoch: [2/2], Step: [70/143], Loss: 0.6995
Epoch: [2/2], Step: [72/143], Loss: 0.7181
Epoch: [2/2], Step: [74/143], Loss: 0.7340
Epoch: [2/2], Step: [76/143], Loss: 0.6885
Epoch: [2/2], Step: [78/143], Loss: 0.7061
Epoch: [2/2], Step: [80/143], Loss: 0.6859
Epoch: [2/2], Step: [82/143], Loss: 0.6821
Epoch: [2/2], Step: [84/143], Loss: 0.6963
Epoch: [2/2], Step: [86/143], Loss: 0.6836
Epoch: [2/2], Step: [88/143], Loss: 0.6870
Epoch: [2/2], Step: [90/143], Loss: 0.6957
Epoch: [2/2], Step: [92/143], Loss: 0.6804
Epoch: [2/2], Step: [94/143], Loss: 0.7612
Epoch: [2/2], Step: [96/143], Loss: 0.7005
Epoch: [2/2], Step: [98/143], Loss: 0.7481
Epoch: [2/2], Step: [100/143], Loss: 0.7385
Epoch: [2/2], Step: [102/143], Loss: 0.6914
Epoch: [2/2], Step: [104/143], Loss: 0.7161
Epoch: [2/2], Step: [106/143], Loss: 0.6914
Epoch: [2/2], Step: [108/143], Loss: 0.6862
Epoch: [2/2], Step: [110/143], Loss: 0.7161
Epoch: [2/2], Step: [112/143], Loss: 0.6887
Epoch: [2/2], Step: [114/143], Loss: 0.6848
Epoch: [2/2], Step: [116/143], Loss: 0.6850
Epoch: [2/2], Step: [118/143], Loss: 0.6952
Epoch: [2/2], Step: [120/143], Loss: 0.6888
Epoch: [2/2], Step: [122/143], Loss: 0.7002
Epoch: [2/2], Step: [124/143], Loss: 0.7047
Epoch: [2/2], Step: [126/143], Loss: 0.7086
Epoch: [2/2], Step: [128/143], Loss: 0.6939
Epoch: [2/2], Step: [130/143], Loss: 0.7021
Epoch: [2/2], Step: [132/143], Loss: 0.6865
Epoch: [2/2], Step: [134/143], Loss: 0.6872
Epoch: [2/2], Step: [136/143], Loss: 0.7039
Epoch: [2/2], Step: [138/143], Loss: 0.6865
Epoch: [2/2], Step: [140/143], Loss: 0.6881
Epoch: [2/2], Step: [142/143], Loss: 0.6984
train loss: 0.0056
train acc: 0.5085
Epoch: [1/1], Step: [2/16], Loss: 0.6790
Epoch: [1/1], Step: [4/16], Loss: 0.6794
Epoch: [1/1], Step: [6/16], Loss: 0.6861
Epoch: [1/1], Step: [8/16], Loss: 0.8617
Epoch: [1/1], Step: [10/16], Loss: 0.7011
Epoch: [1/1], Step: [12/16], Loss: 0.6915
Epoch: [1/1], Step: [14/16], Loss: 0.6909
Epoch: [1/1], Step: [16/16], Loss: 0.8612
val loss: 0.0059
val acc: 0.5032

只训练了2个epoch,现在的目录结构如下:

 

 

 

通过验证集调整好参数之后,主要是学习率和batch_size。 然后就可以利用调整好的参数进行边训练边测试了。下一节主要就是加上学习率衰减策略以及加上边训练边测试代码。在测试的时候会保存准确率最优的那个模型。

 

posted @ 2020-03-11 19:14  西西嘛呦  阅读(3758)  评论(0编辑  收藏  举报