【猫狗数据集】保存训练模型并加载进行继续训练

2020.3.10

发现数据集没有完整的上传到谷歌的colab上去,我说怎么计算出来的step不对劲。

测试集是完整的。

训练集中cat的确是有10125张图片,而dog只有1973张,所以完成一个epoch需要迭代的次数为:

(10125+1973)/128=94.515625,约等于95。

顺便提一下,有两种方式可以计算出数据集的量:

第一种:print(len(train_dataset))

第二种:在../dog目录下,输入ls | wc -c

今天重新上传dog数据集。

分割线-----------------------------------------------------------------

数据集下载地址:

链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw
提取码:2xq4

创建数据集:https://www.cnblogs.com/xiximayou/p/12398285.html

读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html

进行训练:https://www.cnblogs.com/xiximayou/p/12448300.html

epoch、batchsize、step之间的关系:https://www.cnblogs.com/xiximayou/p/12405485.html

之前我们已经可以训练了,接下来我们要保存训练的模型,同时加载保存好的模型,并继续熏训练。

目前的结构:

output是我们新建的保存模型的文件夹。

我们首先修改下训练时的代码:

import sys
sys.path.append("/content/drive/My Drive/colab notebooks")
from utils import rdata
from model import resnet
import torch.nn as nn
import torch
import numpy as np
import torchvision

np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)

torch.backends.cudnn.deterministic = True
#torch.backends.cudnn.benchmark = False
torch.backends.cudnn.benchmark = True

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

train_loader,test_loader,train_data,test_data=rdata.load_dataset()
model =torchvision.models.resnet18(pretrained=False)
model.fc = nn.Linear(model.fc.in_features,2,bias=False)
model.cuda()
#print(model) 

#定义训练的epochs
num_epochs=2
#定义学习率
learning_rate=0.01
#定义损失函数
criterion=nn.CrossEntropyLoss()
#optimizer #=torch.optim.Adam(model.parameters(),lr=learning_rate)
#定义优化方法,简单起见,就是用带动量的随机梯度下降
optimizer = torch.optim.SGD(params=model.parameters(), lr=0.1, momentum=0.9,
                          weight_decay=1*1e-4)
# Train the model
total_step = len(train_loader)
def train():
  total_step = len(train_loader)
  for epoch in range(num_epochs):
      tot_loss = 0.0
      correct = 0
      for i ,(images, labels) in enumerate(train_loader):
          images = images.cuda()
          labels = labels.cuda()

          # Forward pass
          outputs = model(images)
          _, preds = torch.max(outputs.data,1)
          loss = criterion(outputs, labels)

          # Backward and optimizer
          optimizer.zero_grad()
          loss.backward()
          optimizer.step()
          tot_loss += loss.data
          if (i+1) % 2 == 0:
              print('Epoch: [{}/{}], Step: [{}/{}], Loss: {:.4f}'
                    .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
          correct += torch.sum(preds == labels.data).to(torch.float32)
      ### Epoch info ####
      epoch_loss = tot_loss/len(train_data)
      print('train loss: {:.4f}'.format(epoch_loss))
      epoch_acc = correct/len(train_data)
      print('train acc: {:.4f}'.format(epoch_acc))
  state = { 
    'model': model.state_dict(), 
    'optimizer':optimizer.state_dict(), 
    'epoch': epoch,
    'train_loss':epoch_loss,
    'train_acc':epoch_acc,
  }
  save_path="/content/drive/My Drive/colab notebooks/output/"   
  torch.save(state,save_path+'/dogcat-resnet18'+".t7")
 
train()

这里我们只设置训练2个epoch,在训练完2个epoch之后,我们将模型的参数、模型的优化器、当前epoch、当前损失、当前准确率都保存下来。

看下运行结果:

Epoch: [1/2], Step: [2/95], Loss: 2.9102
Epoch: [1/2], Step: [4/95], Loss: 3.1549
Epoch: [1/2], Step: [6/95], Loss: 3.2473
Epoch: [1/2], Step: [8/95], Loss: 0.7810
Epoch: [1/2], Step: [10/95], Loss: 1.0438
Epoch: [1/2], Step: [12/95], Loss: 1.9787
Epoch: [1/2], Step: [14/95], Loss: 0.4577
Epoch: [1/2], Step: [16/95], Loss: 1.2512
Epoch: [1/2], Step: [18/95], Loss: 1.6558
Epoch: [1/2], Step: [20/95], Loss: 0.9157
Epoch: [1/2], Step: [22/95], Loss: 0.9040
Epoch: [1/2], Step: [24/95], Loss: 0.4742
Epoch: [1/2], Step: [26/95], Loss: 1.3849
Epoch: [1/2], Step: [28/95], Loss: 1.0432
Epoch: [1/2], Step: [30/95], Loss: 0.7371
Epoch: [1/2], Step: [32/95], Loss: 0.5443
Epoch: [1/2], Step: [34/95], Loss: 0.7765
Epoch: [1/2], Step: [36/95], Loss: 0.6239
Epoch: [1/2], Step: [38/95], Loss: 0.7696
Epoch: [1/2], Step: [40/95], Loss: 0.4846
Epoch: [1/2], Step: [42/95], Loss: 0.4718
Epoch: [1/2], Step: [44/95], Loss: 0.4329
Epoch: [1/2], Step: [46/95], Loss: 0.4785
Epoch: [1/2], Step: [48/95], Loss: 0.4181
Epoch: [1/2], Step: [50/95], Loss: 0.4522
Epoch: [1/2], Step: [52/95], Loss: 0.4564
Epoch: [1/2], Step: [54/95], Loss: 0.4918
Epoch: [1/2], Step: [56/95], Loss: 0.5383
Epoch: [1/2], Step: [58/95], Loss: 0.4193
Epoch: [1/2], Step: [60/95], Loss: 0.6306
Epoch: [1/2], Step: [62/95], Loss: 0.4218
Epoch: [1/2], Step: [64/95], Loss: 0.4041
Epoch: [1/2], Step: [66/95], Loss: 0.3234
Epoch: [1/2], Step: [68/95], Loss: 0.5065
Epoch: [1/2], Step: [70/95], Loss: 0.3892
Epoch: [1/2], Step: [72/95], Loss: 0.4366
Epoch: [1/2], Step: [74/95], Loss: 0.5148
Epoch: [1/2], Step: [76/95], Loss: 0.4604
Epoch: [1/2], Step: [78/95], Loss: 0.4509
Epoch: [1/2], Step: [80/95], Loss: 0.5301
Epoch: [1/2], Step: [82/95], Loss: 0.4074
Epoch: [1/2], Step: [84/95], Loss: 0.4750
Epoch: [1/2], Step: [86/95], Loss: 0.3800
Epoch: [1/2], Step: [88/95], Loss: 0.4604
Epoch: [1/2], Step: [90/95], Loss: 0.4808
Epoch: [1/2], Step: [92/95], Loss: 0.4283
Epoch: [1/2], Step: [94/95], Loss: 0.4829
train loss: 0.0058
train acc: 0.8139
Epoch: [2/2], Step: [2/95], Loss: 0.4499
Epoch: [2/2], Step: [4/95], Loss: 0.4735
Epoch: [2/2], Step: [6/95], Loss: 0.3268
Epoch: [2/2], Step: [8/95], Loss: 0.4393
Epoch: [2/2], Step: [10/95], Loss: 0.4996
Epoch: [2/2], Step: [12/95], Loss: 0.5331
Epoch: [2/2], Step: [14/95], Loss: 0.5996
Epoch: [2/2], Step: [16/95], Loss: 0.3580
Epoch: [2/2], Step: [18/95], Loss: 0.4898
Epoch: [2/2], Step: [20/95], Loss: 0.3991
Epoch: [2/2], Step: [22/95], Loss: 0.5849
Epoch: [2/2], Step: [24/95], Loss: 0.4977
Epoch: [2/2], Step: [26/95], Loss: 0.3710
Epoch: [2/2], Step: [28/95], Loss: 0.4745
Epoch: [2/2], Step: [30/95], Loss: 0.4736
Epoch: [2/2], Step: [32/95], Loss: 0.4986
Epoch: [2/2], Step: [34/95], Loss: 0.3944
Epoch: [2/2], Step: [36/95], Loss: 0.4616
Epoch: [2/2], Step: [38/95], Loss: 0.5462
Epoch: [2/2], Step: [40/95], Loss: 0.3726
Epoch: [2/2], Step: [42/95], Loss: 0.4639
Epoch: [2/2], Step: [44/95], Loss: 0.3709
Epoch: [2/2], Step: [46/95], Loss: 0.4054
Epoch: [2/2], Step: [48/95], Loss: 0.4791
Epoch: [2/2], Step: [50/95], Loss: 0.4516
Epoch: [2/2], Step: [52/95], Loss: 0.5251
Epoch: [2/2], Step: [54/95], Loss: 0.5928
Epoch: [2/2], Step: [56/95], Loss: 0.4353
Epoch: [2/2], Step: [58/95], Loss: 0.4750
Epoch: [2/2], Step: [60/95], Loss: 0.5224
Epoch: [2/2], Step: [62/95], Loss: 0.4556
Epoch: [2/2], Step: [64/95], Loss: 0.5933
Epoch: [2/2], Step: [66/95], Loss: 0.3845
Epoch: [2/2], Step: [68/95], Loss: 0.4785
Epoch: [2/2], Step: [70/95], Loss: 0.3595
Epoch: [2/2], Step: [72/95], Loss: 0.4227
Epoch: [2/2], Step: [74/95], Loss: 0.4752
Epoch: [2/2], Step: [76/95], Loss: 0.4309
Epoch: [2/2], Step: [78/95], Loss: 0.6019
Epoch: [2/2], Step: [80/95], Loss: 0.4804
Epoch: [2/2], Step: [82/95], Loss: 0.4837
Epoch: [2/2], Step: [84/95], Loss: 0.4814
Epoch: [2/2], Step: [86/95], Loss: 0.4655
Epoch: [2/2], Step: [88/95], Loss: 0.3835
Epoch: [2/2], Step: [90/95], Loss: 0.4910
Epoch: [2/2], Step: [92/95], Loss: 0.6352
Epoch: [2/2], Step: [94/95], Loss: 0.3918
train loss: 0.0037
train acc: 0.8349

然后就会在output文件夹下生成一个dogcat-resnet18.t7文件。

在train文件夹下新建一个retrain.py文件,在里面加入:

import sys
sys.path.append("/content/drive/My Drive/colab notebooks")
from utils import rdata
from model import resnet
import torch.nn as nn
import torch
import numpy as np
import torchvision

np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)

torch.backends.cudnn.deterministic = True
#torch.backends.cudnn.benchmark = False
torch.backends.cudnn.benchmark = True

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

train_loader,test_loader,train_data,test_data=rdata.load_dataset()
model =torchvision.models.resnet18(pretrained=False)
model.fc = nn.Linear(model.fc.in_features,2,bias=False)
model.cuda()
#print(model) 

save_path="/content/drive/My Drive/colab notebooks/output/dogcat-resnet18.t7" 
checkpoint = torch.load(save_path)
model.load_state_dict(checkpoint['model'])
optimizer = torch.optim.SGD(params=model.parameters(), lr=0.1, momentum=0.9,
                          weight_decay=1*1e-4)
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
start_loss=checkpoint["train_loss"]
start_acc=checkpoint["train_acc"]
print("当前epoch:{} 当前训练损失:{:.4f} 当前训练准确率:{:.4f}".format(start_epoch+1,start_loss,start_acc))

num_epochs=4
criterion=nn.CrossEntropyLoss()

# Train the model
total_step = len(train_loader)
def train():
  total_step = len(train_loader)
  for epoch in range(start_epoch+1,num_epochs):
      tot_loss = 0.0
      correct = 0
      for i ,(images, labels) in enumerate(train_loader):
          images = images.cuda()
          labels = labels.cuda()

          # Forward pass
          outputs = model(images)
          _, preds = torch.max(outputs.data,1)
          loss = criterion(outputs, labels)

          # Backward and optimizer
          optimizer.zero_grad()
          loss.backward()
          optimizer.step()
          tot_loss += loss.data
          if (i+1) % 2 == 0:
              print('Epoch: [{}/{}], Step: [{}/{}], Loss: {:.4f}'
                    .format(epoch+1, num_epochs, i+1, total_step, loss.item()))
          correct += torch.sum(preds == labels.data).to(torch.float32)
      ### Epoch info ####
      epoch_loss = tot_loss/len(train_data)
      print('train loss: {:.4f}'.format(epoch_loss))
      epoch_acc = correct/len(train_data)
      print('train acc: {:.4f}'.format(epoch_acc))
  """
  state = { 
    'model': model.state_dict(), 
    'optimizer':optimizer.state_dict(), 
    'epoch': epoch,
    'train_loss':epoch_loss,
    'train_acc':epoch_acc,
  }
  save_path="/content/drive/My Drive/colab notebooks/output/"   
  torch.save(state,save_path+'/dogcat-resnet18'+".t7")
  """
train()

在test.ipynb中:

cd /content/drive/My Drive/colab notebooks/train
!python retrain.py

看下结果:

当前epoch:2 当前训练损失:0.0037 当前训练准确率:0.8349
Epoch: [3/4], Step: [2/95], Loss: 0.4152
Epoch: [3/4], Step: [4/95], Loss: 0.4628
Epoch: [3/4], Step: [6/95], Loss: 0.4717
Epoch: [3/4], Step: [8/95], Loss: 0.3951
Epoch: [3/4], Step: [10/95], Loss: 0.4903
Epoch: [3/4], Step: [12/95], Loss: 0.5084
Epoch: [3/4], Step: [14/95], Loss: 0.4495
Epoch: [3/4], Step: [16/95], Loss: 0.4196
Epoch: [3/4], Step: [18/95], Loss: 0.5053
Epoch: [3/4], Step: [20/95], Loss: 0.5323
Epoch: [3/4], Step: [22/95], Loss: 0.3890
Epoch: [3/4], Step: [24/95], Loss: 0.3874
Epoch: [3/4], Step: [26/95], Loss: 0.4350
Epoch: [3/4], Step: [28/95], Loss: 0.6274
Epoch: [3/4], Step: [30/95], Loss: 0.4692
Epoch: [3/4], Step: [32/95], Loss: 0.4368
Epoch: [3/4], Step: [34/95], Loss: 0.4563
Epoch: [3/4], Step: [36/95], Loss: 0.4526
Epoch: [3/4], Step: [38/95], Loss: 0.6040
Epoch: [3/4], Step: [40/95], Loss: 0.4918
Epoch: [3/4], Step: [42/95], Loss: 0.4760
Epoch: [3/4], Step: [44/95], Loss: 0.4116
Epoch: [3/4], Step: [46/95], Loss: 0.4456
Epoch: [3/4], Step: [48/95], Loss: 0.3902
Epoch: [3/4], Step: [50/95], Loss: 0.4375
Epoch: [3/4], Step: [52/95], Loss: 0.4197
Epoch: [3/4], Step: [54/95], Loss: 0.4583
Epoch: [3/4], Step: [56/95], Loss: 0.5170
Epoch: [3/4], Step: [58/95], Loss: 0.3454
Epoch: [3/4], Step: [60/95], Loss: 0.4854
Epoch: [3/4], Step: [62/95], Loss: 0.4227
Epoch: [3/4], Step: [64/95], Loss: 0.4466
Epoch: [3/4], Step: [66/95], Loss: 0.3222
Epoch: [3/4], Step: [68/95], Loss: 0.4738
Epoch: [3/4], Step: [70/95], Loss: 0.3542
Epoch: [3/4], Step: [72/95], Loss: 0.4057
Epoch: [3/4], Step: [74/95], Loss: 0.5168
Epoch: [3/4], Step: [76/95], Loss: 0.6254
Epoch: [3/4], Step: [78/95], Loss: 0.4532
Epoch: [3/4], Step: [80/95], Loss: 0.5345
Epoch: [3/4], Step: [82/95], Loss: 0.4308
Epoch: [3/4], Step: [84/95], Loss: 0.4858
Epoch: [3/4], Step: [86/95], Loss: 0.3730
Epoch: [3/4], Step: [88/95], Loss: 0.4989
Epoch: [3/4], Step: [90/95], Loss: 0.4551
Epoch: [3/4], Step: [92/95], Loss: 0.4290
Epoch: [3/4], Step: [94/95], Loss: 0.4964
train loss: 0.0036
train acc: 0.8350
Epoch: [4/4], Step: [2/95], Loss: 0.4666
Epoch: [4/4], Step: [4/95], Loss: 0.4718
Epoch: [4/4], Step: [6/95], Loss: 0.3128
Epoch: [4/4], Step: [8/95], Loss: 0.4594
Epoch: [4/4], Step: [10/95], Loss: 0.4340
Epoch: [4/4], Step: [12/95], Loss: 0.5142
Epoch: [4/4], Step: [14/95], Loss: 0.5605
Epoch: [4/4], Step: [16/95], Loss: 0.3684
Epoch: [4/4], Step: [18/95], Loss: 0.4475
Epoch: [4/4], Step: [20/95], Loss: 0.3848
Epoch: [4/4], Step: [22/95], Loss: 0.4336
Epoch: [4/4], Step: [24/95], Loss: 0.3768
Epoch: [4/4], Step: [26/95], Loss: 0.3612
Epoch: [4/4], Step: [28/95], Loss: 0.4216
Epoch: [4/4], Step: [30/95], Loss: 0.4793
Epoch: [4/4], Step: [32/95], Loss: 0.5047
Epoch: [4/4], Step: [34/95], Loss: 0.3930
Epoch: [4/4], Step: [36/95], Loss: 0.5394
Epoch: [4/4], Step: [38/95], Loss: 0.4942
Epoch: [4/4], Step: [40/95], Loss: 0.3508
Epoch: [4/4], Step: [42/95], Loss: 0.4793
Epoch: [4/4], Step: [44/95], Loss: 0.3653
Epoch: [4/4], Step: [46/95], Loss: 0.3687
Epoch: [4/4], Step: [48/95], Loss: 0.4277
Epoch: [4/4], Step: [50/95], Loss: 0.4232
Epoch: [4/4], Step: [52/95], Loss: 0.6062
Epoch: [4/4], Step: [54/95], Loss: 0.4507
Epoch: [4/4], Step: [56/95], Loss: 0.4614
Epoch: [4/4], Step: [58/95], Loss: 0.4422
Epoch: [4/4], Step: [60/95], Loss: 0.5255
Epoch: [4/4], Step: [62/95], Loss: 0.4257
Epoch: [4/4], Step: [64/95], Loss: 0.4618
Epoch: [4/4], Step: [66/95], Loss: 0.3560
Epoch: [4/4], Step: [68/95], Loss: 0.4291
Epoch: [4/4], Step: [70/95], Loss: 0.3562
Epoch: [4/4], Step: [72/95], Loss: 0.3683
Epoch: [4/4], Step: [74/95], Loss: 0.4324
Epoch: [4/4], Step: [76/95], Loss: 0.3972
Epoch: [4/4], Step: [78/95], Loss: 0.5116
Epoch: [4/4], Step: [80/95], Loss: 0.4582
Epoch: [4/4], Step: [82/95], Loss: 0.4102
Epoch: [4/4], Step: [84/95], Loss: 0.4086
Epoch: [4/4], Step: [86/95], Loss: 0.4178
Epoch: [4/4], Step: [88/95], Loss: 0.3906
Epoch: [4/4], Step: [90/95], Loss: 0.4631
Epoch: [4/4], Step: [92/95], Loss: 0.5832
Epoch: [4/4], Step: [94/95], Loss: 0.3421
train loss: 0.0035
train acc: 0.8361

确实是能够继续进行训练,且相关信息也得到了。

 

下一节,进行模型的测试工作啦。

 

posted @ 2020-03-09 23:51  西西嘛呦  阅读(882)  评论(0编辑  收藏