【deep learning学习笔记】注释yusugomori的DA代码 --- dA.cpp -- 训练
说实话,具体的训练公式,我没有自己推导,姑且认为他写的代码是对的。总体上看,用bp的方法。特殊之处,在于输入层和输出层是完完全全的“同一层”。
void dA::get_corrupted_input (
int *x, // the original input 0-1 vector -- input
int *tilde_x, // the resulted 0-1 vector gotten noised -- output
double p // the p probability of noise, binomial test -- input
)
{
for(int i=0; i<n_visible; i++)
{
if(x[i] == 0)
{
// if the state is 0, do noghing
tilde_x[i] = 0;
}
else
{
// if the state is 1, add the noise of p probability on it
tilde_x[i] = binomial(1, p);
}
}
}
// Encode
void dA::get_hidden_values (
int *x, // the input from visible nodes
double *y // the output of hidden nodes
)
{
for(int i=0; i<n_hidden; i++)
{
// calculated sum_j(vj * wij) + bi
y[i] = 0;
for(int j=0; j<n_visible; j++)
{
y[i] += W[i][j] * x[j];
}
y[i] += hbias[i];
// sigmod (y)
y[i] = sigmoid(y[i]);
}
}
// Decode
void dA::get_reconstructed_input (
double *y, // the input from hidden nodes
double *z // the output reconstructed of visible nodes
)
{
for(int i=0; i<n_visible; i++)
{
// calculated sum_j(hj * wij) + ci
z[i] = 0;
for(int j=0; j<n_hidden; j++)
{
z[i] += W[j][i] * y[j];
}
z[i] += vbias[i];
// sigmod (z)
z[i] = sigmoid(z[i]);
}
}
void dA::train (
int *x, // the input sample from visiable node
double lr, // the learning rate
double corruption_level // corruption_level is the probability of noise
)
{
// the auto-encoder networks:
// input(visible) layer --> hidden layer --> output(visible) layer
// the input layer is the same as the output layer, the two layers are totally same.
// we train it by the standard bp algorithm, from output layer to the hidden layer, and to the input layer
// Here is the whole process:
int *tilde_x = new int[n_visible]; // the noise input
double *y = new double[n_hidden]; // the output of hidden layer
double *z = new double[n_visible]; // the output of output layer, reconstruction
double *L_vbias = new double[n_visible]; // temp value for visible bias
double *L_hbias = new double[n_hidden]; // temp value for hidden bias
double p = 1 - corruption_level;
// make the input sample noise by the p probability
get_corrupted_input(x, tilde_x, p);
// calculate the output of hidden nodes by the noise input, encode
get_hidden_values(tilde_x, y);
// reconstruct the input sample from visible nodes, decode
get_reconstructed_input(y, z);
// update the bias of visible nodes
for(int i=0; i<n_visible; i++)
{
// the difference between input sample and the PROBABILITY of reconstructed probability of visible node
// it's different from RBM that in RBM we calcualte the difference between input sample and
// the 0-1 state of the reconstructed visiable node
// here use the standard bp algorithm, from visible layer to hidden layer
L_vbias[i] = x[i] - z[i];
// update the value by the learning rate
vbias[i] += lr * L_vbias[i] / N;
}
// update the bias of hidden nodes
for(int i=0; i<n_hidden; i++)
{
// propgate the bias from visible nodes
// here use the standard bp algorithm, from visible layer to hidden layer
L_hbias[i] = 0;
for(int j=0; j<n_visible; j++)
{
L_hbias[i] += W[i][j] * L_vbias[j];
}
L_hbias[i] *= y[i] * (1 - y[i]);
hbias[i] += lr * L_hbias[i] / N;
}
// update the weight of networks
for(int i=0; i<n_hidden; i++)
{
for(int j=0; j<n_visible; j++)
{
W[i][j] += lr * (L_hbias[i] * tilde_x[j] + L_vbias[j] * y[i]) / N;
}
}
delete[] L_hbias;
delete[] L_vbias;
delete[] z;
delete[] y;
delete[] tilde_x;
}
void dA::reconstruct (
int *x, // the input sample -- input
double *z // the reconstructed value -- output
)
{
double *y = new double[n_hidden];
// calculate the output of hidden layer
get_hidden_values(x, y);
// reconstruct from hidden layer to visible layer
get_reconstructed_input(y, z);
delete[] y;
}

浙公网安备 33010602011771号