并发编程之基础( 四)

新类库

前面已经把并发编程的基础知识讲的差不多了,这章主要介绍一下JAVA中其它一些关于并发编程的类库,主要有一下几个类库。

  • CountDownLatch
  • CyclicBarrier
  • BlockingQueue
  • ScheduleExecutor
  • Semaphore
  • Exchanger

1. CountDownLatch

  该类主要是同步一个或多个任务,强制一个或多个任务等待其它任务执行的一组操作完成。可以给该对象设置一个初始计数值,当计数值不为0时,调用该对象的await()方法就会阻塞,调用counDown()方法会让计数值减1,当计数值为0时阻塞任务会被唤醒。其典型用法就是将一个程序分成多个独立的任务,并给CountDownLatch设定一个初始值,该初始值应该为首先需要执行的线程的个数(比如赛跑,5个运动员都做好准备之后,裁判才能打枪,这时初始值应该设置为5)。一些任务需要等待其它任务先完成或者其它任务的一部分完成,那么可以待用await()将自己挂起。而另一些任务的某些操作完成时调用countDown()方法来减小计数值,等待计数值为0时,挂起的任务则则认为当前所有的条件以满足继续执行的需要了,则可以继续运行。注意:计数值只能被设置一次且在new的时候就要指定初值,而且该对象只能使用一次,如果想重复使用,请考虑CyclicBarrier

 1 package com.dy.xidian;
 2 
 3 import java.util.Random;
 4 import java.util.concurrent.CountDownLatch;
 5 import java.util.concurrent.ExecutorService;
 6 import java.util.concurrent.Executors;
 7 import java.util.concurrent.TimeUnit;
 8 
 9 class TaskPortion implements Runnable {
10     private static int counter = 0;
11     private final int id = counter++;
12     private static Random rand = new Random(47);
13     private final CountDownLatch latch;
14 
15     public TaskPortion(CountDownLatch latch) {
16         super();
17         this.latch = latch;
18     }
19 
20     @Override
21     public void run() {
22         try {
23             doWork();
24             latch.countDown();
25         } catch (InterruptedException e) {
26         }
27 
28     }
29 
30     public void doWork() throws InterruptedException {
31         TimeUnit.MILLISECONDS.sleep(rand.nextInt(2000));
32         System.out.println(this + "completed");
33     }
34 
35     public String toString() {
36         return String.format("%1$-3d", id);
37     }
38 }
39 
40 class WaitingTask implements Runnable {
41     private static int counter = 0;
42     private final int id = counter++;
43     private final CountDownLatch latch;
44 
45     public WaitingTask(CountDownLatch latch) {
46         super();
47         this.latch = latch;
48     }
49 
50     @Override
51     public void run() {
52         try {
53             latch.await();
54             System.out.println("Latch barrier passed for " + this);
55         } catch (InterruptedException e) {
56             System.out.println(this + " interrupted");
57         }
58     }
59 
60     public String toString() {
61         return String.format("WaitingTask %1$-3d ", id);
62     }
63 }
64 public class CountDownLatchDemo {
65     static final int SIZE = 100;
66     public static void main(String[] args) {
67         ExecutorService exec = Executors.newCachedThreadPool();
68         CountDownLatch latch = new CountDownLatch(SIZE);
69         for (int i = 0; i < 10; i++)
70             exec.execute(new WaitingTask(latch));
71         for (int i = 0; i < SIZE; i++)
72             exec.execute(new TaskPortion(latch));
73         System.out.println("Launched all tasks");
74         exec.shutdownNow();
75     }
76 }
View Code

2. CyclicBarrier

  CyclicBarrier与CountDownLatch功能差不多,不同之处就是可以多次使用,等到计数值变为0时,它会自动重置。而且不需要每个线程都去调用类似countDown()这样的方法,因为每调用一个await(),它就会自动将计数值减1。它使用于这种情况:多个线程并行执行工作,大家一致向前推进,所有线程在这个阶段的工作都完成了(所有的线程都调用了await方法),才能进入下一阶段,而对于那些早完成的线程只能先等待了。下面是一个赛马比赛,每个马可以看作一个线程,等所有的马都达到栅栏后,才能开始新一轮的比赛。

  1 package com.dy.xidian;
  2 
  3 import java.util.ArrayList;
  4 import java.util.List;
  5 import java.util.Random;
  6 import java.util.concurrent.BrokenBarrierException;
  7 import java.util.concurrent.CyclicBarrier;
  8 import java.util.concurrent.ExecutorService;
  9 import java.util.concurrent.Executors;
 10 import java.util.concurrent.TimeUnit;
 11 
 12 class Horse implements Runnable {
 13     private static int counter = 0;
 14     private final int id = counter++;
 15     private int strides = 0;
 16     private static Random rand = new Random(47);
 17     private static CyclicBarrier barrier;
 18 
 19     public Horse(CyclicBarrier b) {
 20         barrier = b;
 21     }
 22 
 23     public synchronized int getStriders() {
 24         return strides;
 25     }
 26 
 27     @Override
 28     public void run() {
 29         try {
 30             while (!Thread.interrupted()) {
 31                 synchronized (this) {
 32                     strides += rand.nextInt(3);
 33                 }
 34                 barrier.await();
 35             }
 36         } catch (InterruptedException e) {
 37             // TODO
 38         } catch (BrokenBarrierException e) {
 39             throw new RuntimeException(e);
 40         }
 41     }
 42 
 43     public String toString() {
 44         return "Horse " + id + " ";
 45     }
 46 
 47     public String tracks() {
 48         StringBuilder s = new StringBuilder();
 49         for (int i = 0; i < getStriders(); i++)
 50             s.append("*");
 51         s.append(id);
 52         return s.toString();
 53     }
 54 }
 55 
 56 public class HorseRace {
 57     static final int FINISH_LINE = 75;
 58     private List<Horse> horses = new ArrayList<Horse>();
 59     private ExecutorService exec = Executors.newCachedThreadPool();
 60     private CyclicBarrier barrier;
 61 
 62     public HorseRace(int nHorses, final int pause) {
 63         barrier = new CyclicBarrier(nHorses, new Runnable() {
 64 
 65             @Override
 66             public void run() {
 67                 StringBuilder s = new StringBuilder();
 68                 for (int i = 0; i < FINISH_LINE; i++) {
 69                     s.append("=");
 70                     System.out.println(s);
 71                     for (Horse horse : horses)
 72                         System.out.println(horse.tracks());
 73                     for (Horse horse : horses)
 74                         if (horse.getStriders() >= FINISH_LINE) {
 75                             System.out.println(horse + "won!");
 76                             exec.shutdownNow();
 77                             return;
 78                         }
 79                     try {
 80                         TimeUnit.MILLISECONDS.sleep(pause);
 81                     } catch (InterruptedException e) {
 82                         System.out.println("barrier-action sleep interrupted");
 83                     }
 84                 }
 85             }
 86         });
 87 
 88         for (int i = 0; i < nHorses; i++) {
 89             Horse horse = new Horse(barrier);
 90             horses.add(horse);
 91             exec.execute(horse);
 92         }
 93     }
 94 
 95     public static void main(String[] args) {
 96         int nHorses = 7;
 97         int pause = 200;
 98         if (args.length > 0) {
 99             int n = new Integer(args[0]);
100             nHorses = n > 0 ? n : nHorses;
101         }
102         if (args.length > 1) {
103             int p = new Integer(args[1]);
104             pause = p > -1 ? p : pause;
105         }
106         new HorseRace(nHorses, pause);
107     }
108 }
View Code

运行结果:

=
**0
***1
*2
**3
*4
***5
***6
==
**0
***1
*2
**3
*4
***5
***6
===
**0
***1
*2
**3
*4
***5
***6
====

  运行结果中的==表示栅栏,数字为每个马的编号,*的个数代表每个马目前跑了多少步。在代码我,我们可以看到在创建CyclicBarrier对象时,我们还给他传递了一个复写了Runnable后的对象,这是我CounDownLatch不同的地方。每当计数器的值为0的是时候,里面的该对象中的run方法会被调用。可能有这样一种情况,当计数值再次变为0时,上次的run方法还没执行完,它会不会创建新的线程重新执行run方法呢?通过测试,这种情况是不会发生的,只有等run执行完,才会去创建新的线程。

 3 BlockingQueue

BlockingQueue是一个接口,用于生产者-消费者模型,是一个线程安全的容器。它的实现类有LinkedBlockingQueue(空间无限,FIFO), ArrayBlockingQueue(空间有限,FIFO),PriorityBlockingQueue(元素等级高的在队头),SynchronousQueue(内部没有缓冲区,生产者线程需要将产品直接交给一个空闲的消费者线程,否则将一直处于阻塞状态)

3.1 DelayQueue

  DelayQueue是一个无界的阻塞队列,用于存放实现了Delayed接口的对象,其中的对象只能在其延迟期满才能从队列中取走。该队列的头部是延迟期满后保存时间最长的Delayed元素。如果没有任何延迟期满的对象,那就不会有任何头元素,这时如果使用take()方法从队列获取对象时会发生阻塞,使用poll时会直接返回null。

  1 package com.dy.xidian;
  2 
  3 import java.util.ArrayList;
  4 import java.util.List;
  5 import java.util.Random;
  6 import java.util.concurrent.DelayQueue;
  7 import java.util.concurrent.Delayed;
  8 import java.util.concurrent.ExecutorService;
  9 import java.util.concurrent.Executors;
 10 import java.util.concurrent.TimeUnit;
 11 
 12 class DelayedTask implements Runnable, Delayed {
 13     private static int counter = 0;
 14     private final int id = counter++;
 15     private final int delayTime;
 16     private final long trigger;
 17 
 18     protected static List<DelayedTask> sequeue = new ArrayList<DelayedTask>();
 19 
 20     // System.nanoTime()获取当前时间,结果是纳秒级
 21     // TimeUnit.MILLSECONDS.convert(time, TimeUnit.SECONDS)
 22     // 时间转换(一般是大单位转小单位),比如计算1s=多少ms之类的
 23     // time是时间,TimeUnit.SECONDS是原始单位(s),MILLISECONDS是转换后的单位(ms)
 24     public DelayedTask(int delayInMilliseconds) {
 25         delayTime = delayInMilliseconds;
 26         trigger = System.nanoTime()
 27                 + TimeUnit.NANOSECONDS.convert(delayTime, TimeUnit.MILLISECONDS);
 28         sequeue.add(this);
 29     }
 30 
 31     // 重载Delayed接口的getDelay方法,该示例代码给出的是重载的标准形式
 32     @Override
 33     public long getDelay(TimeUnit unit) {
 34         return unit.convert(trigger - System.nanoTime(), TimeUnit.NANOSECONDS);
 35 
 36     }
 37 
 38     //比较每个对象的触发时间,以确定在队列中的位置
 39     @Override
 40     public int compareTo(Delayed arg) {
 41         DelayedTask that = (DelayedTask) arg;
 42         if (trigger < that.trigger)
 43             return -1;
 44         if (trigger > that.trigger)
 45             return 1;
 46         return 0;
 47     }
 48 
 49     @Override
 50     public void run() {
 51         System.out.println(this + " ");
 52     }
 53 
 54     public String toString() {
 55         return String.format("[%1$-4d]", counter) + "Task " + id;
 56     }
 57 
 58     public String summary() {
 59         return "(" + id + ":" + counter + ")";
 60     }
 61 
 62     public static class EndSentinel extends DelayedTask {
 63         private ExecutorService exec;
 64 
 65         public EndSentinel(int delay, ExecutorService e) {
 66             super(delay);
 67             exec = e;
 68         }
 69 
 70         public void run() {
 71             for (DelayedTask pt : sequeue) {
 72                 System.out.println(pt.summary() + " ");
 73             }
 74             System.out.println(this + " Calling shutdownNow()");
 75             exec.shutdownNow();
 76         }
 77     }
 78 }
 79 
 80 class DelayTaskConsumer implements Runnable {
 81     private DelayQueue<DelayedTask> q;
 82     public DelayTaskConsumer(DelayQueue<DelayedTask> q) {
 83         this.q = q;
 84     }
 85 
 86     @Override
 87     public void run() {
 88         try {
 89             while (!Thread.interrupted())
 90                 q.take().run();
 91         } catch (InterruptedException e) {
 92         }
 93         System.out.println("Finised DelayedTaskConsumer!");
 94     }
 95 
 96 }
 97 public class DelayQueueDemo {
 98     public static void main(String[] args) {
 99         Random rand = new Random(47);
100         ExecutorService exec = Executors.newCachedThreadPool();
101         DelayQueue<DelayedTask> queue = new DelayQueue<DelayedTask>();
102         for (int i = 0; i < 20; i++)
103             queue.put(new DelayedTask(rand.nextInt(5000)));
104         queue.add(new DelayedTask.EndSentinel(5000, exec));
105         exec.execute(new DelayTaskConsumer(queue));
106     }
107 }
View Code

运行结果:

 1 [128 ]Task 11 
 2 [200 ]Task 7 
 3 [429 ]Task 5 
 4 [520 ]Task 18 
 5 [555 ]Task 1 
 6 [961 ]Task 4 
 7 [998 ]Task 16 
 8 [1207]Task 9 
 9 [1693]Task 2 
10 [1809]Task 14 
11 [1861]Task 3 
12 [2278]Task 15 
13 [3288]Task 10 
14 [3551]Task 12 
15 [4258]Task 0 
16 [4258]Task 19 
17 [4522]Task 8 
18 [4589]Task 13 
19 [4861]Task 17 
20 [4868]Task 6 
21 (0:21) 
22 (1:21) 
23 (2:21) 
24 (3:21) 
25 (4:21) 
26 (5:21) 
27 (6:21) 
28 (7:21) 
29 (8:21) 
30 (9:21) 
31 (10:21) 
32 (11:21) 
33 (12:21) 
34 (13:21) 
35 (14:21) 
36 (15:21) 
37 (16:21) 
38 (17:21) 
39 (18:21) 
40 (19:21) 
41 (20:21) 
42 [5000]Task 20 Calling shutdownNow()
43 Finised DelayedTaskConsumer!
View Code

  该程序创建了20个delayedTask对象,这20对象其实是线程对象,然后将这20对象放入DelayedQueue中,同时将这20个对象加入到list中以表明创建的先后顺序。每个线程的延迟期是通过随机数指定的。在DelayedTask中有一个内部类,该类的作用就是遍历list,输出每个线程的信息(id + 延迟期),最后关闭整个线程。DelayedTaskConsumer就是不断从DelayedQueue中取线程对象,然后让其执行。

  关于Delayed接口的实现这里要强调一下,代码中写的是标准形式,也是策略模式的一种简单实现。delayTime是延迟期,需要我们指定。trigger表示这个对象的激活时间(比如到11点整时,其延迟期满),其计算方法就是获取当前时间+延迟期。而getDelay(TimeUnit unit)这个函数是个关键,这个函数会被调用两次:第一次查看延期满的时间点和当前时间之差(比如当前时间9点,延迟期满是在11点),发现是正值,对象需要继续等待;第二次查看时发现是负值(比如当前时间已经到了12点了),返回值为负数,说明对象的延迟期已经到了,可以使用了。 

3.2 PriorityBlockingQueue

队列是按照优先级级顺序排序的,优先级大的在队头。队列中的对象应该实现Comparable接口。在compareTo中,当和其他对象比较时,如果该方法返回负数,那么在队列里面的优先级就比较高。

  1 package com.dy.xidian;
  2 
  3 import java.util.ArrayList;
  4 import java.util.List;
  5 import java.util.Queue;
  6 import java.util.Random;
  7 import java.util.concurrent.ExecutorService;
  8 import java.util.concurrent.Executors;
  9 import java.util.concurrent.PriorityBlockingQueue;
 10 import java.util.concurrent.TimeUnit;
 11 
 12 class PrioritizedTask implements Runnable, Comparable<PrioritizedTask> {
 13     private Random rand = new Random(47);
 14     private static int counter = 0;
 15     private final int id = counter++;
 16     private final int priority;
 17 
 18     protected static List<PrioritizedTask> sequeue = new ArrayList<PrioritizedTask>();
 19 
 20     public PrioritizedTask(int priority) {
 21         super();
 22         this.priority = priority;
 23         sequeue.add(this);
 24     }
 25 
 26     @Override
 27     public int compareTo(PrioritizedTask that) {
 28         if (this.priority > that.priority)
 29             return -1;
 30         if (this.priority < that.priority)
 31             return 1;
 32         return 0;
 33     }
 34 
 35     @Override
 36     public void run() {
 37         try {
 38             TimeUnit.MILLISECONDS.sleep(rand.nextInt(250));
 39             System.out.println(this);
 40         } catch (InterruptedException e) {
 41         }
 42 
 43     }
 44 
 45     @Override
 46     public String toString() {
 47         return String.format("[%1$-3d]", priority) + "Task" + id;
 48     }
 49 
 50     public String summary() {
 51         return "(" + id + " : " + priority + ")";
 52     }
 53 
 54     public static class EndSentinel extends PrioritizedTask {
 55         private ExecutorService exec;
 56 
 57         public EndSentinel(ExecutorService e) {
 58             super(-1);
 59             exec = e;
 60         }
 61 
 62         public void run() {
 63             int count = 0;
 64             for (PrioritizedTask pt : sequeue) {
 65                 System.out.println(pt.summary());
 66                 if (++count % 5 == 0)
 67                     System.out.println("");
 68             }
 69             System.out.println("");
 70             System.out.println(this + " Calling shutdownNow()");
 71             exec.shutdownNow();
 72         }
 73     }
 74 }
 75 
 76 class PrioritizedTaskProducer implements Runnable {
 77     private Random rand = new Random(47);
 78     private Queue<Runnable> queue;
 79     private ExecutorService exec;
 80 
 81     public PrioritizedTaskProducer(Queue<Runnable> queue, ExecutorService exec) {
 82         super();
 83         this.queue = queue;
 84         this.exec = exec;
 85     }
 86 
 87     @Override
 88     public void run() {
 89         for (int i = 0; i < 10; i++) {
 90             queue.add(new PrioritizedTask(rand.nextInt(10)));
 91             Thread.yield();
 92         }
 93         try {
 94             for (int i = 0; i < 10; i++) {
 95                 TimeUnit.MILLISECONDS.sleep(250);
 96                 queue.add(new PrioritizedTask(10));
 97             }
 98 
 99         } catch (InterruptedException e) {
100         }
101         for (int i = 0; i < 10; i++)
102             queue.add(new PrioritizedTask(i));
103         queue.add(new PrioritizedTask.EndSentinel(exec));
104         System.out.println("Finished PrioritizedTaskProducer");
105     }
106 }
107 
108 class PrioritizedTaskConsumer implements Runnable {
109     private PriorityBlockingQueue<Runnable> q;
110     public PrioritizedTaskConsumer(PriorityBlockingQueue<Runnable> q) {
111         super();
112         this.q = q;
113     }
114 
115     @Override
116     public void run() {
117         try {
118             TimeUnit.SECONDS.sleep(1);
119         } catch (InterruptedException e1) {
120         }
121         try {
122             while (!Thread.interrupted()) {
123                 q.take().run();
124             }
125         } catch (InterruptedException e) {
126             System.out.println("Interrupted Execption!");
127         }
128         System.out.println("Finished PrioritizedTaskConsumer");
129     }
130 }
131 
132 public class PriorityBlockingQueueDemo {
133     public static void main(String[] args) throws InterruptedException {
134         ExecutorService exec = Executors.newCachedThreadPool();
135         PriorityBlockingQueue<Runnable> queue = new PriorityBlockingQueue<Runnable>();
136         exec.execute(new PrioritizedTaskProducer(queue, exec));
137         exec.execute(new PrioritizedTaskConsumer(queue));
138     }
139 }
View Code

 

4.ScheduledThreadPoolExecutor

制定任务计划表,指定主线程运行多少秒(毫秒)后,开启子线程来运行别的任务。

 1 package com.dy.xidian;
 2 
 3 import java.text.SimpleDateFormat;
 4 import java.util.Date;
 5 import java.util.concurrent.ScheduledThreadPoolExecutor;
 6 import java.util.concurrent.TimeUnit;
 7 
 8 public class TaskTest {
 9     static ScheduledThreadPoolExecutor scheduler = null;
10     static int index = 0;
11 
12     public static void main(String[] args) {
13 
14         // 构造一个ScheduledThreadPoolExecutor对象,并且设置它的容量为5个
15         scheduler = new ScheduledThreadPoolExecutor(5);
16         MyTask task = new MyTask();
17         // 隔2秒后开始执行任务,并且在上一次任务开始后隔一秒再执行一次;
18         // stpe.scheduleWithFixedDelay(task, 2, 1, TimeUnit.SECONDS);
19         // 隔6秒后执行一次,但只会执行一次。
20         for (int i = 0; i < 10; i++)
21             scheduler.schedule(task, i + 1, TimeUnit.SECONDS);
22     }
23 
24     private static String getTimes() {
25         SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss E");
26         Date date = new Date();
27         date.setTime(System.currentTimeMillis());
28         return format.format(date);
29     }
30 
31     private static class MyTask implements Runnable {
32 
33         @Override
34         public void run() {
35             index++;
36             System.out.println(getTimes() + " " + index);
37             if (index >= 10) {
38                 scheduler.shutdownNow();
39             }
40         }
41     }
42 }

5.Semaphore

  同类资源只有一个的话,我们可以用Lock或者是synchronized来对它进行互斥访问。当同类资源数量有多个,能够满足多个线程同时操作时,可以考虑到使用信号量来实现互斥访问。

对象池代码

 1 package com.dy.xidian;
 2 
 3 import java.util.ArrayList;
 4 import java.util.List;
 5 import java.util.concurrent.Semaphore;
 6 
 7 public class ObjectPool<T> {
 8     private int size;
 9     private List<T> items = new ArrayList<T>();
10     private volatile boolean[] checkOut;
11     private Semaphore available;
12 
13     public ObjectPool(Class<T> classObject, int size) {
14         this.size = size;
15         checkOut = new boolean[size];
16         //size表示初始资源数,true表示对请求进行先来先服务操作
17         available = new Semaphore(size, true);
18         for (int i = 0; i < size; i++) {
19             try {
20                 items.add(classObject.newInstance());
21             } catch (Exception e) {
22                 throw new RuntimeException(e);
23             }
24         }
25     }
26 
27     public T checkOut() throws InterruptedException {
28         //获取信号量,如果没有资源请等待,信号量计数减1
29         available.acquire();
30         return getItem();
31     }
32 
33     private synchronized T getItem() {
34         for (int i = 0; i < size; i++) {
35             if (!checkOut[i]) {
36                 checkOut[i] = true;
37                 return items.get(i);
38             }
39         }
40         return null;
41     }
42 
43     public void checkIn(T x) {
44         //归还资源,释放信号量,信号量计数加1
45         if (releaseItem(x))
46             available.release();
47     }
48 
49     private synchronized boolean releaseItem(T item) {
50         int index = items.indexOf(item);
51         if (index == -1)
52             return false;
53         if (checkOut[index]) {
54             checkOut[index] = false;
55             return true;
56         }
57         return false;
58     }
59 }
View Code

信号量Demo:

 1 package com.dy.xidian;
 2 
 3 import java.util.ArrayList;
 4 import java.util.List;
 5 import java.util.concurrent.ExecutorService;
 6 import java.util.concurrent.Executors;
 7 import java.util.concurrent.Future;
 8 import java.util.concurrent.TimeUnit;
 9 
10 class Fat {
11     private volatile double d = 0;
12     private static int counter = 0;
13     private final int id = counter++;
14     public Fat() {
15         for (int i = 0; i < 1000; i++) {
16             d += (Math.PI + Math.E) / (double) i;
17         }
18     }
19 
20     public void operation() {
21         System.out.println(this);
22     }
23 
24     public String toString() {
25         return "Fat id: " + id;
26     }
27 }
28 class CheckOutTask<T> implements Runnable {
29     private static int counter = 0;
30     private final int id = counter++;
31     private ObjectPool<T> pool;
32 
33     public CheckOutTask(ObjectPool<T> pool) {
34         this.pool = pool;
35     }
36 
37     @Override
38     public void run() {
39         try {
40             T item = pool.checkOut();
41             System.out.println(this + "checked out " + item);
42             TimeUnit.SECONDS.sleep(1);
43             System.out.println(this + "checked in " + item);
44             pool.checkIn(item);
45         } catch (InterruptedException e) {
46         }
47     }
48 
49     public String toString() {
50         return "CheckoutTask" + id + " ";
51     }
52 }
53 
54 public class SemaphoreDemo {
55     final static int SIZE = 10;
56 
57     public static void main(String[] args) throws InterruptedException {
58         final ObjectPool<Fat> pool = new ObjectPool<Fat>(Fat.class, SIZE);
59         ExecutorService exec = Executors.newCachedThreadPool();
60         List<Fat> list = new ArrayList<Fat>();
61         // 创建10个子线程进行签入、签出操作
62         for (int i = 0; i < SIZE; i++)
63             exec.execute(new CheckOutTask<Fat>(pool));
64         System.out.println("All checkout Task created");
65 
66         // 主线程只签出
67         for (int i = 0; i < SIZE; i++) {
68             Fat f = pool.checkOut();
69             System.out.println(i + " : main() thread checked out");
70             f.operation();
71             list.add(f);
72         }
73 
74         Future<?> blocked = exec.submit(new Runnable() {
75 
76             @Override
77             public void run() {
78                 try {
79                     pool.checkOut();
80                 } catch (InterruptedException e) {
81                     System.out.println("checkOut() interrupted");
82                 }
83             }
84         });
85         TimeUnit.SECONDS.sleep(2);
86         blocked.cancel(true);
87         System.out.println("Checking in objects in " + list);
88         for (Fat fat : list)
89             pool.checkIn(fat);
90         for (Fat fat : list)
91             pool.checkIn(fat);
92         exec.shutdown();
93     }
94 }

  代码中创建了一个对象池,每次从池中获取对象时都要先获取信号量,如果信号量计数小于或等于0,则等待。信号量在创建时需要指定资源数,对象池中最开始有10个对象,则信号量的初始值应为10。在使用完对象后应该归还该对象并释放信号量。对于信号量的使用比较简答些。关于对象池代码则可以作为今后编程中示例代码。

6.Exchanger

  Exchanger可以在两个线程之间交换数据,只能是2个线程,他不支持更多的线程之间互换数据。当线程A调用Exchange对象的exchange()方法后,他会陷入阻塞状态,直到线程B也调用了exchange()方法,然后以线程安全的方式交换数据,之后线程A和B继续运行。

  1 package com.dy.xidian;
  2 
  3 import java.util.List;
  4 import java.util.concurrent.CopyOnWriteArrayList;
  5 import java.util.concurrent.Exchanger;
  6 import java.util.concurrent.ExecutorService;
  7 import java.util.concurrent.Executors;
  8 import java.util.concurrent.TimeUnit;
  9 
 10 import net.mindview.util.BasicGenerator;
 11 import net.mindview.util.Generator;
 12 
 13 class ExchangerProducer<T> implements Runnable {
 14     private Generator<T> generator;
 15     private Exchanger<List<T>> exchanger;
 16     private List<T> holder;
 17 
 18     /**
 19      * 
 20      * @param exchanger交换器
 21      *            , 用于交换对象
 22      * @param generator产生器
 23      *            , 产生要交换的数据
 24      * @param holder数据容器
 25      *            , 用来存储产生的数据
 26      */
 27     public ExchangerProducer(Exchanger<List<T>> exchanger,
 28             Generator<T> generator, List<T> holder) {
 29         super();
 30         this.generator = generator;
 31         this.exchanger = exchanger;
 32         this.holder = holder;
 33     }
 34 
 35     /**
 36      * 生产者线程会生成一个满的List,用于交换对象
 37      */
 38     @Override
 39     public void run() {
 40         try {
 41             while (!Thread.interrupted()) {
 42                 for (int i = 0; i < ExchangerDemo.size; i++)
 43                     holder.add(generator.next());
 44                 // 返回值是从消费者那里拿到的数据(其实就是一个空表)
 45                 holder = exchanger.exchange(holder);
 46             }
 47         } catch (InterruptedException e) {
 48         }
 49     }
 50 }
 51 
 52 class ExchangerConsumer<T> implements Runnable {
 53     private Exchanger<List<T>> exchanger;
 54     private List<T> holder;
 55     private volatile T value;
 56 
 57     /**
 58      * 
 59      * @param exchanger交换器
 60      *            ,用于交换数据
 61      * @param holder
 62      *            欲交换的对象
 63      */
 64     public ExchangerConsumer(Exchanger<List<T>> exchanger, List<T> holder) {
 65         super();
 66         this.exchanger = exchanger;
 67         this.holder = holder;
 68     }
 69 
 70     /**
 71      * 消费者不断将表中的元素移除,给生产者一个空表
 72      */
 73     @Override
 74     public void run() {
 75         try {
 76             while (!Thread.interrupted()) {
 77                 holder = exchanger.exchange(holder);
 78                 for (T x : holder) {
 79                     value = x;
 80                     holder.remove(x);
 81                 }
 82             }
 83         } catch (InterruptedException e) {
 84         }
 85         System.out.println("Final value: " + value);
 86     }
 87 }
 88 
 89 public class ExchangerDemo {
 90     static int size = 10;
 91     static int delay = 5;
 92 
 93     public static void main(String[] args) throws Exception {
 94         if (args.length > 0)
 95             size = new Integer(args[0]);
 96         if (args.length > 1)
 97             delay = new Integer(args[1]);
 98         ExecutorService exec = Executors.newCachedThreadPool();
 99         Exchanger<List<Fat>> xc = new Exchanger<List<Fat>>();
100         List<Fat> producerList = new CopyOnWriteArrayList<Fat>(), consumerList = new CopyOnWriteArrayList<Fat>();
101         exec.execute(new ExchangerProducer<Fat>(xc, BasicGenerator
102                 .create(Fat.class), producerList));
103         exec.execute(new ExchangerConsumer<Fat>(xc, consumerList));
104         TimeUnit.SECONDS.sleep(delay);
105         exec.shutdownNow();
106     }
107 }
View Code

代码中ExchangeProducer不断填充List,然后将这个满表交换为ExchangerConsumer传递给它的空表。

代码中用到的写时拷贝技术可以查考下面链接

http://www.cnblogs.com/dolphin0520/p/3938914.html

 

posted @ 2016-03-27 23:52  被罚站的树  阅读(306)  评论(0编辑  收藏  举报