1、线程池的处理流程(execute方法)
当向线程池提交一个任务后,其经历的流程如下:
1)、如果当前线程数小于核心线程数(corePoolSize),则创建新线程来执行该任务;
2)、如果当前线程数不小于,即等于或大于核心线程数(corePoolSize),则将任务添加到阻塞队列(BlockingQueue)中;
3)、如果阻塞队列中的任务已满,且此时线程数小于最大线程数(maximumPoolSize)时,则创建新线程来执行该任务;
4)、执行对应的任务策略,一般是拒绝任务,抛出异常。
2、任务策略:
1)、抛出异常
ThreadPoolExecutor.AbortPolicy()
2)、丢弃当前的任务
ThreadPoolExecutor.DiscardPolicy()
3)、丢弃老的任务
ThreadPoolExecutor.DiscardOldestPolicy()
4)、重试添加当前的任务
ThreadPoolExecutor.CallerRunsPolicy()
3、线程池源码分析
1)、若干变量
//将工作线程数和线程池状态放在一个int类型变量中存储而设置的一个原子类型的变量
//故在ctl中,低29位是用于表示工作线程数,高位用于表示线程池状态,如RUNNING、SHUTDOWN等。
//故一个线程池中最多有工作线程的个数为(2^29) - 1
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
//低29位
private static final int COUNT_BITS = Integer.SIZE - 3;
//线程池中最大的工作线程数
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
//线程池状态,用高3位表示
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
//获取当前线程池的状态
private static int runStateOf(int c) { return c & ~CAPACITY; }
//获取当前线程池中的工作线程数
private static int workerCountOf(int c) { return c & CAPACITY; }
//组合当前线程池状态和工作线程数为一个int类型的变量
private static int ctlOf(int rs, int wc) { return rs | wc; }
2)、execute()方法
public void execute(Runnable command) {
//当提交的任务为null时,则抛出空指针异常
if (command == null)
throw new NullPointerException();
//获取当前线程池用于记录状态和工作线程数的变量
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
//检测当前线程池中的工作线程数小于核心线程数时,则直接创建新线程,执行任务
if (addWorker(command, true))
return;
//当创建新线程失败时,需要重新获取用于记录状态和工作线程数的变量
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
//当前线程池是运行状态,且将任务添加到阻塞队列中成功时
//再次获取用于记录状态和工作线程数的变量
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
//当前线程池不是运行状态,且删除成功时,使用任务策略
reject(command);
else if (workerCountOf(recheck) == 0)
//当前工作线程数为0时,直接添加空任务
addWorker(null, false);
}
else if (!addWorker(command, false))
//阻塞队列已满且当前工作线程数小于最大线程数时,则直接创建线程,执行任务
//若还失败,则直接使用任务策略
reject(command);
}
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
//获取当前线程池的状态
int rs = runStateOf(c);
//检测当前线程池是否处于关闭状态
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
//获取当前线程池的工作线程数
int wc = workerCountOf(c);
//如果超过了限制,则返回false
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
//通过CAS增加一个工作线程
if (compareAndIncrementWorkerCount(c))
break retry;
//再次获取用于标记线程池状态和记录工作线程数的变量,并比对当前状态是否一直,若不是,则继续外环循环,否则继续内环循环
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
final ReentrantLock mainLock = this.mainLock;
//新建一个工作线程
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
mainLock.lock();
//加锁
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int c = ctl.get();
int rs = runStateOf(c);
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
//将工作线程添加到线程集合Set中
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
//工作线程开始启动,执行提交的任务
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
//工作线程的构造方法
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
//线程执行体
/** Delegates main run loop to outer runWorker */
public void run() {
//调用父类的runWorker方法
runWorker(this);
}
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
//不断的从任务队列中获取任务,并执行
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
//线程是否中断关闭
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
//任务执行前的执行方法
beforeExecute(wt, task);
Throwable thrown = null;
try {
//执行任务
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
//任务执行或的执行方法
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
//调用该方法后,该线程池不会再接受新任务,当已经存在的任务执行完毕后,线程池就会关闭
void shutdown()
//调用该方法后,该线程池会尝试关闭现有的线程,直到所有的线程都关闭,线程池就会关闭
List<Runnable> shutdownNow()
4、常用的线程池
1)、固定大小线程的线程池 newFixedThreadPool
2)、单一线程的线程池,当线程发生异常结束时,则会另外创建一个新的线程,以保持线程池自始至终只有一个线程 newSingleThreadExecutor
3)、无限制线程数的线程池,当空闲线程超过空闲时间时(默认1分钟),线程会被回收 newCachedThreadPool
5、阻塞队列
//往队列中添加元素,成功返回true,失败抛出异常
boolean add(E e)
//往队列中添加元素,成功返回true,失败返回false
boolean offer(E e)
//往队列中添加元素,在指定的时间内若是添加不了,则返回false,否则返回true
boolean offer(E e, long timeout, TimeUnit unit)
//有阻塞的添加元素,即肯定能将元素添加到队列中,但是可能一直被阻塞
void put(E e) throws InterruptedException
//获取队列中的首元素,没有返回null
E poll()
//获取队列中的首元素,在指定的时间内若是获取不到,则返回null
E poll(long timeout, TimeUnit unit)
//获取队列中的首元素,当队列中没有元素时,则一直阻塞,直到有元素时,才返回首元素
E take()