C++11 lambda表达式

lambda表达式完整声明

选自博主:https://www.cnblogs.com/DswCnblog/p/5629165.html

[capture list] (params list) mutable exception-> return type { function body }
  1. capture list:捕获外部变量列表
  2. params list:形参列表
  3. mutable指示符:用来说用是否可以修改捕获的变量
  4. exception:异常设定
  5. return type:返回类型
  6. function body:函数体

此外,我们还可以省略其中的某些成分来声明“不完整”的Lambda表达式,常见的有以下几种:

 

 

 

 

  • 格式1声明了const类型的表达式,这种类型的表达式不能修改捕获列表中的值。
  • 格式2省略了返回值类型,但编译器可以根据以下规则推断出Lambda表达式的返回类型:
    •   (1):如果function body中存在return语句,则该Lambda表达式的返回类型由return语句的返回类型确定;
    •   (2):如果function body中没有return语句,则返回值为void类型。
  • 格式3中省略了参数列表,类似普通函数中的无参函数。

格式二和三常用

简单使用一:

vector<int> vec = {1,3,2,34,2,11};
int m = [](int x) { return [](int y) { return y * 2; }(x)+6; }(5);
cout << m << endl;

auto func1 = [](int i) { return i + 4; }(2); // int i 这个i的值是2,
cout << func1 << endl; // 6

auto f5 = [](int a, int b) {return a + b; };
cout << f5(1,2); // 注意这里的写法

// i 这个也可以从前面获取
sort(vec.begin(), vec.end(), [](int a, int b){return a < b;});

for(auto it : vec) // 1 2 2 3 11 34
cout << it <<" ";

cout << endl;
// for_each 遍历
for_each(vec.begin(), vec.end(), [](int a){cout <<a << " ";});
// 1 2 2 3 11 34

STL中使用方法

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
 
bool cmp(int a, int b)
{
    return  a < b;
}
 
int main()
{
    vector<int> myvec{ 3, 2, 5, 7, 3, 2 };
    vector<int> lbvec(myvec);
 
    sort(myvec.begin(), myvec.end(), cmp); // 旧式做法
    cout << "predicate function:" << endl;
    for (int it : myvec)
        cout << it << ' ';
    cout << endl;
 
  // 这里的a和b是形参 sort(lbvec.begin(), lbvec.end(), [](
int a, int b) -> bool { return a < b; }); // Lambda表达式 cout << "lambda expression:" << endl; for (int it : lbvec) cout << it << ' '; }

在C++11之前,我们使用STL的sort函数,需要提供一个谓词函数。如果使用C++11的Lambda表达式,

我们只需要传入一个匿名函数即可,方便简洁,而且代码的可读性也比旧式的做法好多了。

下面,我们就重点介绍一下Lambda表达式各项的具体用法。

1、值捕获

值捕获和参数传递中的值传递类似被捕获的变量的值在Lambda表达式创建时通过值拷贝的方式传入,因此随后对该变量的修改不会影响影响Lambda表达式中的值。

int main()
{
    int a = 123;
    auto f = [a] { cout << a << endl; }; 
    a = 321;
    f(); // 输出:123
}

这里需要注意的是,如果以传值方式捕获外部变量,则在Lambda表达式函数体中不能修改该外部变量的值。

2、引用捕获

使用引用捕获一个外部变量,只需要在捕获列表变量前面加上一个引用说明符&。如下:

int main()
{
    int a = 123;
    auto f = [&a] { cout << a << endl; }; 
    a = 321;
    f(); // 输出:321
}

从示例中可以看出,引用捕获的变量使用的实际上就是该引用所绑定的对象。

3、隐式捕获

上面的值捕获和引用捕获都需要我们在捕获列表中显示列出Lambda表达式中使用的外部变量。

除此之外,我们还可以让编译器根据函数体中的代码来推断需要捕获哪些变量,这种方式称之为隐式捕获。

隐式捕获有两种方式,分别是[=]和[&]。

总结下来就是:[=]表示以值捕获的方式捕获外部变量,[&]表示以引用捕获的方式捕获外部变量。

隐式值捕获示例:

int main()
{
    int a = 123;
    auto f = [=] { cout << a << endl; };    // 值捕获
    f(); // 输出:123
}

隐式引用捕获示例:

复制代码
int main()
{
    int a = 123;
    auto f = [&] { cout << a << endl; };    // 引用捕获
    a = 321;
    f(); // 输出:321
}
复制代码

4、混合方式

上面的例子,要么是值捕获,要么是引用捕获,Lambda表达式还支持混合的方式捕获外部变量,这种方式主要是以上几种捕获方式的组合使用。

到这里,我们来总结一下:C++11中的Lambda表达式捕获外部变量主要有以下形式:

捕获形式说明
[] 不捕获任何外部变量
[变量名, …] 默认以值得形式捕获指定的多个外部变量(用逗号分隔),如果引用捕获,需要显示声明(使用&说明符)
[this] 以值的形式捕获this指针
[=] 以值的形式捕获所有外部变量
[&] 以引用形式捕获所有外部变量
[=, &x] 变量x以引用形式捕获,其余变量以传值形式捕获
[&, x] 变量x以值的形式捕获,其余变量以引用形式捕获

修改捕获变量

前面我们提到过,在Lambda表达式中,如果以传值方式捕获外部变量,则函数体中不能修改该外部变量,否则会引发编译错误。那么有没有办法可以修改值捕获的外部变量呢?这是就需要使用mutable关键字,该关键字用以说明表达式体内的代码可以修改值捕获的变量,示例:

复制代码
int main()
{
    int a = 123;
    auto f = [a]()mutable { cout << ++a; }; // 不会报错
    cout << a << endl; // 输出:123
    f(); // 输出:124
}
复制代码

Lambda表达式的参数

Lambda表达式的参数和普通函数的参数类似,那么这里为什么还要拿出来说一下呢?原因是在Lambda表达式中传递参数还有一些限制,主要有以下几点:

  1. 参数列表中不能有默认参数
  2. 不支持可变参数
  3. 所有参数必须有参数名

常用举例:

复制代码
   {
     int m = [](int x) { return [](int y) { return y * 2; }(x)+6; }(5); std::cout << "m:" << m << std::endl;   //输出m:16 std::cout << "n:" << [](int x, int y) { return x + y; }(5, 4) << std::endl; //输出n:9 auto gFunc = [](int x) -> function<int(int)> { return [=](int y) { return x + y; }; }; auto lFunc = gFunc(4); std::cout << lFunc(5) << std::endl; auto hFunc = [](const function<int(int)>& f, int z) { return f(z) + 1; }; auto a = hFunc(gFunc(7), 8); int a = 111, b = 222; auto func = [=, &b]()mutable { a = 22; b = 333; std::cout << "a:" << a << " b:" << b << std::endl; }; func(); std::cout << "a:" << a << " b:" << b << std::endl; a = 333; auto func2 = [=, &a] { a = 444; std::cout << "a:" << a << " b:" << b << std::endl; }; func2(); auto func3 = [](int x) ->function<int(int)> { return [=](int y) { return x + y; }; };

  
     std::function<void(int x)> f_display_42 = [](int x) { print_num(x); };
	f_display_42(44);
  }
复制代码

 

 
posted @ 2020-03-28 21:25  Lucky&  阅读(651)  评论(0编辑  收藏  举报
//返回顶部开始
//返回顶部结束