python调用大模型api来进行对话
一、Openai的接口调用
pip包下载
pip install openai
配置sk,url
OPENAI_API_KEY = sk-xxxxx OPENAI_BASE_URL = https://api.openai.com/v1
接口调用
import os
from flask import Flask, jsonify
from openai import OpenAI
config = configparser.ConfigParser()
config.read("config.cfg", encoding="utf-8")
OPENAI_API_KEY = config.get("default", "OPENAI_API_KEY", fallback=None)
OPENAI_BASE_URL = config.get("default", "OPENAI_BASE_URL", fallback=None)
@app.route("/gpt_test")
def gpt_test():
"""
简单调用一次 GPT,返回一个固定问题的回答
"""
if not OPENAI_API_KEY:
return jsonify({"error": "OPENAI_API_KEY 未配置"}), 500
try:
# 这里用的是 chat.completions.create 风格
resp = client.chat.completions.create(
model="gpt-4.1-mini", # 或者你有的任意模型,比如 gpt-4.1, gpt-4o 等
messages=[
{"role": "system", "content": "你是一个简洁回答的助手。"},
{"role": "user", "content": "简单用一句话介绍一下你自己。"},
],
)
answer = resp.choices[0].message.content
return jsonify({"answer": answer})
except Exception as e:
print("GPT 调用异常:", repr(e))
return jsonify({"error": str(e)}), 500
二、阿里通义
安装官方sdk
pip install dashscope
使用dashscope.Generation.call基本可以复用
ALIYUN_API_KEY = config.get("default", "ALIYUN_API_KEY", fallback=None)
@app.route("/llm_test/")
def llm_test():
"""测试与大模型的对话功能"""
try:
messages = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': '你是谁?'}
]
answer = chat_with_model(messages)
return jsonify({"answer": answer})
except Exception as e:
print("LLM error:", repr(e))
return jsonify({"error": str(e)}), 500
这里有几类模型id都可以使用:
- qwen3-max
- qwen-plus
- qwen-turbo
参考:阿里云百炼
如果需要使用到prompt,比如我们有路径app/prompt_store/底下的prompt文件:doc-llm-latest.md
首先按照字符串处理的思路,先读取出来:
from pathlib import Path
# run.py 所在目录
BASE_DIR = Path(__file__).resolve().parent
PROMPT_DIR = BASE_DIR / "app" / "prompt_store"
PROMPT_LATEST_FILE = PROMPT_DIR / "doc-llm-latest.md"
def load_latest_prompt() -> str | None:
"""读取 doc-llm-latest.md 的内容"""
try:
with PROMPT_LATEST_FILE.open("r", encoding="utf-8") as f:
return f.read()
except FileNotFoundError:
print(f"[WARN] Prompt file not found: {PROMPT_LATEST_FILE}")
return None
except Exception as e:
print(f"[ERROR] Failed to read prompt: {e!r}")
return None
然后message格式补充
@app.route("/llm_with_prompt/")
def llm_with_prompt():
"""使用最新的Prompt与大模型对话"""
prompt = load_latest_prompt()
if not prompt:
return jsonify({"error": "No prompt available"}), 500
try:
messages = [
{
'role': 'system',
'content': prompt
},
{
'role': 'user',
'content': "请用一两句话,概括一下这个文档测试规范的核心目标。"
}
]
answer = chat_with_model(messages)
return jsonify({"answer": answer})
except Exception as e:
print("LLM with prompt error:", repr(e))
return jsonify({"error": str(e)}), 500
我们将llm对话能力函数封装起来,提供一个类或者函数来调用
# 统一管理大模型调用,提供配置
import configparser
from pathlib import Path
import dashscope
BASE_DIR = Path(__file__).resolve().parent.parent
CONFIG_FILE = BASE_DIR / "config.cfg"
config = configparser.ConfigParser()
config.read(CONFIG_FILE, encoding="utf-8")
ALIYUN_API_KEY = config.get("default", "ALIYUN_API_KEY", fallback=None)
ALIYUN_MODEL = config.get("default", "ALIYUN_MODEL")
def init_llm():
"""在Flask启动时调用一次,设置api_key"""
if not ALIYUN_API_KEY:
print("[WARN] No ALIYUN_API_KEY configured in config.cfg")
dashscope.api_key = ALIYUN_API_KEY
def chat_with_model(messages: list[dict]) -> str:
"""调用大模型进行对话
Args:
messages (list[dict]): 消息列表,格式参考OpenAI Chat API
Returns:
str: 模型回复内容
"""
if not ALIYUN_API_KEY:
raise ValueError("No ALIYUN_API_KEY configured")
response = dashscope.Generation.call(
model=ALIYUN_MODEL,
messages=messages,
)
print(f"raw response: {response}")
answer = response["output"]["choices"][0]["message"]["content"]
return answer

浙公网安备 33010602011771号