GAN网络之入门教程(二)之GAN原理

在一篇博客GAN网络从入门教程(一)之GAN网络介绍中,简单的对GAN网络进行了一些介绍,介绍了其是什么,然后大概的流程是什么。

在这篇博客中,主要是介绍其数学公式,以及其算法流程。当然数学公式只是简单的介绍,并不会设计很复杂的公式推导。如果想详细的了解GAN网络的原理,推荐去看李宏毅老师的课程。B站和Youtube上面都有。

概率分布

生成器

首先我们是可以知道真实图片的分布函数\(p_{data}(x)\),同时我们把假的图片也看成一个概率分布,称之为\(p_g = (x,\theta)\)。那么我们的目标是什么呢?我们的目标就是使得\(p_g(x,\theta)\)尽量的去逼近\(p_{data}(x)\)。在GAN中,我们使用神经网络去逼近\(p_g = (x,\theta)\)

在生成器中,我们有如下模型:

其中\(z \sim P_{z}(z)\),因此\(G(z)\)也是一个针对于\(z\)概率密度分布函数。

判别器

针对于判别器,我们有\(D(x,\theta)\),其代表某一张z图片\(x\)为真的概率。

目标函数

Generative Adversarial Nets论文中给出了以下的目标函数,也就是GAN网络需要优化的东西。

\[\begin{equation}\min _{G} \max _{D} V(D, G)=\mathbb{E}_{\boldsymbol{x} \sim p_{\text {data }}(\boldsymbol{x})}[\log D(\boldsymbol{x})]+\mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1-D(G(\boldsymbol{z})))]\end{equation} \]

公式看起来很复杂,但是我们分开来看还是比较简单的。

\(D^*\)

\(D\)网络的目标是什么?能够辨别真假,也就是说,给定一张真的图片\(x\)\(D\)网络能够给出一个高分,也就是\(D(x)\)尽量大一点。而针对于生成器\(G\)生成的图片\(G(z)\),我们希望判别器\(D\)尽量给低分,也就是\(D(G(z))\)尽量的小一点。因此\(D\)网络的目标函数如下所示:

\[\begin{equation}\max _{D} V(D, G)=\mathbb{E}_{\boldsymbol{x} \sim p_{\text {data }}(\boldsymbol{x})}[\log D(\boldsymbol{x})]+\mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1-D(G(\boldsymbol{z})))]\end{equation} \]

在目标函数中,\(x\)代表的是真实数据(也就是真的图片),\(G(z)\)代表的是生成器生成的图片。

\(G^*\)

\(G\)网络的目标就是使得\(D(G(z))\)尽量得高分,因此其目标函数可以写成:

\[\begin{equation}\max _{G} V(D, G)=\mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (D(G(\boldsymbol{z})))]\end{equation} \]

\(D(G(z))\)尽量得高分(分数在\([0,1]\)之间),等价于\(1 - D(G(z))\)尽量的低分,因此,上述目标函数等价于:

\[\begin{equation}\min _{G} V(D, G)=\mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1-D(G(\boldsymbol{z})))]\end{equation} \]

因此我们优化\(D^*\)和优化\(G^*\)结合起来,也就是变成了论文中的目标函数:

\[\begin{equation}\min _{G} \max _{D} V(D, G)=\mathbb{E}_{\boldsymbol{x} \sim p_{\text {data }}(\boldsymbol{x})}[\log D(\boldsymbol{x})]+\mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1-D(G(\boldsymbol{z})))]\end{equation} \]

证明存在全局最优解

上面的公式看起来很合理,但是如果不存在最优解的话,一切也都是无用功。

D最优解

首先,我们固定G,来优化D,目标函数为:

\(\begin{equation} V(G, D)=\mathbb{E}_{\boldsymbol{x} \sim p_{\text {data }}(\boldsymbol{x})}[\log D(\boldsymbol{x})]+\mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1-D(G(\boldsymbol{z})))]\end{equation}\)

我们可以写做:

\[\begin{equation}\begin{aligned} V(G, D) &=\int_{\boldsymbol{x}} p_{\text {data }}(\boldsymbol{x}) \log (D(\boldsymbol{x})) d x+\int_{\boldsymbol{z}} p_{\boldsymbol{z}}(\boldsymbol{z}) \log (1-D(g(\boldsymbol{z}))) d z \\ &=\int_{\boldsymbol{x}} [ p_{\text {data }}(\boldsymbol{x}) \log (D(\boldsymbol{x}))+p_{g}(\boldsymbol{x}) \log (1-D(\boldsymbol{x}))] d x \end{aligned}\end{equation} \]

我们设(\(D\)代表\(D(x)\),可以代表任何函数):

\[f(D) = P_{data}(x) log D + P_G(x)log(1-D) \]

对于每一个固定的\(x\)而言,为了使\(V\)最大,我们当然是希望\(f(D)\)越大越好,这样积分后的值也就越大。因为固定了\(G\),因此\(p_g(x)\)是固定的,而\(P_{data}\)是客观存在的,则值也是固定的。我们对\(f(D)\)求导,然后令\(f'(D) = 0\),可得:

\[\begin{equation}D^{*}=\frac{P_{d a t a}(x)}{P_{d a t a}(x)+P_{G}(x)}\end{equation} \]

下图表示了,给定三个不同的 \(G1,G3,G3\) 分别求得的令 \(V(G,D)\)最大的那个$ D^∗\(,横轴代表了\)P_{data}$,蓝色曲线代表了可能的 \(P_G\),绿色的距离代表了 \(V(G,D)\)

G最优解

同理,我们可以求\(\underset{D}{max}\ V(G,D)\),我们将前面的得到的\(D^{*}=\frac{P_{d a t a}(x)}{P_{d a t a}(x)+P_{G}(x)}\)带入可得:

\[% <![CDATA[ \begin{align} & \underset{D}{min}\ V(G,D) \\ & = V(G,D^{* })\\ & = E_{x \sim P_{data} } \left [\ log\ D^{* }(x) \ \right ] + E_{x \sim P_{G} } \left [\ log\ (1-D^{* }(x)) \ \right ] \\ & = E_{x \sim P_{data} } \left [\ log\ \frac{P_{data}(x)}{P_{data}(x)+P_G(x)} \ \right ] + E_{x \sim P_{G} } \left [\ log\ \frac{P_{G}(x)}{P_{data}(x)+P_G(x)} \ \right ]\\ & = \int_{x} P_{data}(x) log \frac{P_{data}(x)}{P_{data}(x)+P_G(x)} dx+ \int_{x} P_G(x)log(\frac{P_{G}(x)}{P_{data}(x)+P_G(x)})dx \\ & = \int_{x} P_{data}(x) log \frac{\frac{1}{2}P_{data}(x)}{\frac{P_{data}(x)+P_G(x)}{2} } dx+ \int_{x} P_{G}(x) log \frac{\frac{1}{2}P_{G}(x)}{\frac{P_{data}(x)+P_G(x)}{2} } dx \\ & = \int_{x}P_{data}(x)\left ( log \frac{1}{2}+log \frac{P_{data}(x)}{\frac{P_{data}(x)+P_G(x)}{2} } \right ) dx \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + \int_{x}P_{G}(x)\left ( log \frac{1}{2}+log \frac{P_{G}(x)}{\frac{P_{data}(x)+P_G(x)}{2} } \right ) dx \\ & = \int_{x}P_{data}(x) log \frac{1}{2} dx + \int_{x}P_{data}(x) log \frac{P_{data}(x)}{\frac{P_{data}(x)+P_G(x)}{2} } dx \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + \int_{x}P_{G}(x) log \frac{1}{2} dx + \int_{x}P_{G}(x) log \frac{P_{G}(x)}{\frac{P_{data}(x)+P_G(x)}{2} } dx \\ & = 2 log \frac{1}{2} + \int_{x}P_{data}(x) log \frac{P_{data}(x)}{\frac{P_{data}(x)+P_G(x)}{2} } dx + \int_{x}P_{G}(x) log \frac{P_{G}(x)}{\frac{P_{data}(x)+P_G(x)}{2} } dx\\ & = 2 log \frac{1}{2} + 2 \times \left [ \frac{1}{2} KL\left( P_{data}(x) || \frac{P_{data}(x)+P_{G}(x)}{2}\right )\right ] \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ + 2 \times \left [ \frac{1}{2} KL\left( P_{G}(x) || \frac{P_{data}(x)+P_{G}(x)}{2}\right )\right ] \\ & = -2 log 2 + 2 JSD \left ( P_{data}(x) || P_G(x) \right) \end{align} %]]> \]

其中\(JSD ( P_{data}(x) || P_G(x))\)的取值范围是从 \(0\)\(log2\),其中当\(P_{data} = P_G\)是,\(JSD\)取最小值0。也就是说$ V(G,D)$的取值范围是\(0\)\(-2log2\),也就是说$ V(G,D)\(存在最小值,且此时\)P_{data} = P_G$。

算法流程

上述我们从理论上讨论了全局最优值的可行性,但实际上样本空间是无穷大的,也就是我们没办法获得它的真实期望(\(\mathbb{E}_{\boldsymbol{x} \sim p_{\text {data }}(\boldsymbol{x})}\)\(\mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}}(\boldsymbol{z})\)是未知的),因此我们使用估测的方法来进行。

\[\tilde V = \frac{1}{m}\sum_{i=1}^{m} log D(x^i) + \frac{1}{m}\sum_{i=1}^{m} log (1-D(\tilde x^i)) \]

算法流程图如下所示(来自生成对抗网络——原理解释和数学推导):

总结

上述便是GAN网络的数学原理,以及推导流程还有算法。我也是刚开始学,参考了如下的博客,其中生成对抗网络——原理解释和数学推导非常值得一看,里面非常详细的对GAN进行了推导,同时,bilibili——【机器学习】白板推导系列(三十一) ~ 生成对抗网络(GAN)中的视频也不错,手把手白板的对公式进行了推导。如有任何问题,或文章有任何错误,欢迎在评论区下方留言。

参考

posted @ 2020-07-05 15:18  渣渣辉啊  阅读(4268)  评论(0编辑  收藏  举报