hdu1527威佐夫博弈
威佐夫博弈
有两堆石子,不妨先认为一堆有 10,另一堆有 15 个,双方轮流取走一些石子,合法的取法有如下两种:
1、在一堆石子中取走任意多颗;
2、在两堆石子中取走相同多的任意颗;
约定取走最后一颗石子的人为赢家,求必胜策略。
两堆石头地位是一样的,我们用余下的石子数(a,b)来表示状态,并画在平面直角坐标系上。
和前面类似,(0,0)肯定是 P 态,又叫必败态。(0,k),(k,0),(k,k)系列的节点肯定不是 P 态,而是必胜态,你面对这样的局面一定会胜,只要按照规则取一次就可以了。再看 y = x 上方未被划去的格点,(1,2)是 P 态。k > 2 时,(1,k)不是 P 态,比如你要是面对(1,3)的局面,你是有可能赢的。同理,(k,2),(1 + k, 2 + k)也不是 P 态,划去这些点以及它们的对称点,然后再找出 y = x 上方剩余的点,你会发现(3,5)是一个 P 态,如此下去,如果我们只找出 a ≤ b 的 P 态,则它们是(0,0),(1,2),(3,5),(4,7),(6,10)……它们有什么规律吗?
忽略(0,0),很快会发现对于第 i 个 P 态的 a,a = i * (sqrt(5) + 1)/2 然后取整;而 b = a + i。居然和黄金分割点扯上了关系。
前几个必败点如下:(0,0),(1,2),(3,5),(4,7),(6,10),(8,13)……可以发现,对于第k个必败点(m(k),n(k))来说,m(k)是前面没有出现过的最小自然数,n(k)=m(k)+k。
判断一个点是不是必败点的公式与黄金分割有关为:
m(k) = k * (1 + sqrt(5))/2
n(k) = m(k) + k;
参考链接:取石子游戏(hdu1527 博弈) - 寻找&星空の孩子 - 博客园
import java.util.Scanner; public class hdu1527 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); while (sc.hasNext()){ int a = sc.nextInt(); int b = sc.nextInt(); if (a==0&&b==0){ System.out.println(0); }else{ if (a>b){ int tmp = a; a = b; b = tmp; } // i * (Math.sqrt(5.0) + 1)/2 -1 < a < i * (Math.sqrt(5.0) + 1)/2 double i = Math.floor(2*a/(Math.sqrt(5.0) + 1)); if (a == Math.floor(i * (Math.sqrt(5.0) + 1)/2 )){ if (b==a+i){ System.out.println(0); }else{ System.out.println(1); } }else{ if (a == Math.floor((i+1) * (Math.sqrt(5.0) + 1)/2 )){ if (b==a+i+1){ System.out.println(0); }else{ System.out.println(1); } }else{ System.out.println(1); } } } } } }