import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.naive_bayes import GaussianNB
import matplotlib
#生成所有测试样本点
def make_meshgrid(x,y,h=0.02):
x_min,x_max = x.min()-1,x.max()+1
y_min, y_max = y.min() - 1, y.max() + 1
xx,yy = np.meshgrid(np.arange(x_min,x_max,h),np.arange(y_min,y_max,h))
return xx,yy
def plot_test_results(ax,clf,xx,yy,**params):
Z = clf.predict(np.c_[xx.ravel(),yy.ravel()])
Z = Z.reshape(xx.shape)
ax.contourf(xx,yy,Z, **params)
if __name__ == '__main__':
#载入iris数据集
iris = datasets.load_iris()
#只使用前面两个特征
X = iris.data[:,:2]
#样本标签值
y = iris.target
#创建并训练正态朴素贝叶斯分类器
clf = GaussianNB()
clf.fit(X,y)
title = ('GaussianBayesClassifier')
fig,ax = plt.subplots(figsize=(5,5))
plt.subplots_adjust(wspace=0.4,hspace=0.4)
X0,X1 = X[:,0],X[:,1]
#生成所有测试样本点
xx,yy = make_meshgrid(X0,X1)
#显示测试样本的分类结果
plot_test_results(ax,clf,xx,yy,cmap=plt.cm.coolwarm,alpha=0.8)
#显示训练样本
ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k')
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xlabel('x1')
ax.set_ylabel('x2')
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(title)
plt.show()