#!/usr/bin/python
# -*- coding:utf-8 -*-
import numpy as np
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn import preprocessing
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
def iris_type(s):
it = {b'Iris-setosa': 0,
b'Iris-versicolor': 1,
b'Iris-virginica': 2}
return it[s]
if __name__ == "__main__":
path = u'C:\8.iris.data' # 数据文件路径
# # 路径,浮点型数据,逗号分隔,第4列使用函数iris_type单独处理
data = np.loadtxt(path, dtype=float, delimiter=',', converters={4: iris_type})
print("data",data)
# 将数据的0到3列组成x,第4列得到y
x, y = np.split(data, (4,), axis=1)
# 为了可视化,仅使用前两列特征
x = x[:, :2]
print("x:",x)
print("y:",y)
#
# x = StandardScaler().fit_transform(x)
# lr = LogisticRegression() # Logistic回归模型
# lr.fit(x, y.ravel()) # 根据数据[x,y],计算回归参数
#
# 等价形式
lr = Pipeline([('sc', StandardScaler()),
('clf', LogisticRegression()) ])
lr.fit(x, y.ravel())
# 画图
N, M = 500, 500 # 横纵各采样多少个值
x1_min, x1_max = x[:, 0].min(), x[:, 0].max() # 第0列的范围
x2_min, x2_max = x[:, 1].min(), x[:, 1].max() # 第1列的范围
t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, M)
x1, x2 = np.meshgrid(t1, t2) # 生成网格采样点
x_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点
# 无意义,只是为了凑另外两个维度
# x3 = np.ones(x1.size) * np.average(x[:, 2])
# x4 = np.ones(x1.size) * np.average(x[:, 3])
# x_test = np.stack((x1.flat, x2.flat, x3, x4), axis=1) # 测试点
cm_light = mpl.colors.ListedColormap(['#77E0A0', '#FF8080', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
y_hat = lr.predict(x_test) # 预测值
y_hat = y_hat.reshape(x1.shape) # 使之与输入的形状相同
plt.pcolormesh(x1, x2, y_hat, cmap=cm_light) # 预测值的显示
print("===="*30)
print(len(x[:,0]))
plt.scatter(x[:, 0], x[:, 1], c=np.squeeze(y), edgecolors='k', s=50, cmap=cm_dark) # 样本的显示
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.grid()
# plt.savefig('2.png')
plt.show()
# 训练集上的预测结果
y_hat = lr.predict(x)
y = y.reshape(-1)
result = y_hat == y
print(y_hat)
print(result)
acc = np.mean(result)
print('准确度: %.2f%%' % (100 * acc))