[tsinsen_A1278]串珠子

[tsinsen_A1278]串珠子

试题描述

铭铭有 \(n\) 个十分漂亮的珠子和若干根颜色不同的绳子。现在铭铭想用绳子把所有的珠子连接成一个整体。

现在已知所有珠子互不相同,用整数 \(1\)\(n\) 编号。对于第 \(i\) 个珠子和第 \(j\) 个珠子,可以选择不用绳子连接,或者在 \(c_{i,j}\) 根不同颜色的绳子中选择一根将它们连接。如果把珠子看作点,把绳子看作边,将所有珠子连成一个整体即为所有点构成一个连通图。特别地,珠子不能和自己连接。

铭铭希望知道总共有多少种不同的方案将所有珠子连成一个整体。由于答案可能很大,因此只需输出答案对 \(1000000007\) 取模的结果。

输入

标准输入。输入第一行包含一个正整数 \(n\),表示珠子的个数。接下来 \(n\) 行,每行包含 \(n\) 个非负整数,用空格隔开。这 \(n\) 行中,第 \(i\) 行第 \(j\) 个数为 \(c_{i,j}\)

输出

标准输出。输出一行一个整数,为连接方案数对 \(1000000007\) 取模的结果。

输入示例

3
0 2 3
2 0 4
3 4 0

输出示例

50

数据规模及约定

对于 \(100\%\) 的数据,\(n\) 为正整数,所有的 \(c_{i,j}\) 为非负整数且不超过 \(1000000007\)。保证 \(c_{i,j}=c_{j,i}\)。每组数据的 \(n\) 值如下表所示。

编号12345678910
$n$$8$$9$$9$$10$$11$$12$$13$$14$$15$$16$

题解

一道挺经典的状压 dp,这题有一些计数技巧。

状态很简单,就是令 \(f(s)\) 表示集合 \(s\) 内所有点处于一个连通分量内的方案数,关键是怎么转移。

为了让计算的方案不重不漏,我们需要设计一个方案使得每次转移都是唯一的,不会被重复转移,同时也能够让转移覆盖到所有情况。

这题就是找到集合 \(s\) 中的前两个元素(或者第一个和最后一个元素也行,需要保证每次都选的是特定的两个元素),令第一个为 \(t_1\),第二个为 \(t_2\),然后我们要枚举第一次拆解(这次拆解后的两个集合都通过 \(t_1\) 这个点相连,即 \(t_1\)\(s\) 连通分量的割顶),并且由于这个拆解是没有顺序的,所以我们要保证每次拆解都需要将 \(t_1\)\(t_2\) 分开。于是枚举 \(s\) 的子集 \(s'\),使得 \(t_2 \in s'\)\(t_1 \in s - s'\),然后将 \(s\) 分成 \(s'\)\(s - s'\) 两个集合,最后转移就是 \(f(s) = f(s') \cdot f(s-s') \cdot \prod_{i \in s'} {c_{t_1, i}}\)

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define rep(i, s, t) for(int i = (s); i <= (t); i++)
#define dwn(i, s, t) for(int i = (s); i >= (t); i--)

const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
	if(Head == Tail) {
		int l = fread(buffer, 1, BufferSize, stdin);
		Tail = (Head = buffer) + l;
	}
	return *Head++;
}
int read() {
	int x = 0, f = 1; char c = Getchar();
	while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
	while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
	return x * f;
}

#define maxn 20
#define maxs 65536
#define MOD 1000000007
#define LL long long

int n, c[maxn][maxn], Log[maxs], f[maxs], mul[maxn][maxs];

int main() {
	n = read();
	rep(i, 0, n - 1) rep(j, 0, n - 1) c[i][j] = read();
	
	int all = (1 << n) - 1;
	Log[1] = 0;
	rep(i, 2, all + 1) Log[i] = Log[i>>1] + 1;
	rep(i, 0, n - 1) {
		mul[i][0] = 1;
		rep(s, 1, all) mul[i][s] = (LL)mul[i][s&~(s&-s)] * (c[i][Log[s&-s]] + 1) % MOD;
	}
	rep(s, 1, all) {
		int cnt = 0, t1 = -1, t2 = -1;
		rep(i, 0, n - 1) if(s >> i & 1) {
			cnt++;
			if(t1 < 0) t1 = i;
			else if(t2 < 0) t2 = i;
		}
		if(cnt == 1){ f[s] = 1; continue; }
		for(int ts = (s - 1 & s); ts; ts = (ts - 1 & s)) if((ts >> t2 & 1) && !(ts >> t1 & 1)) {
			f[s] += (LL)f[ts] * f[s^ts] % MOD * (mul[t1][ts] + MOD - 1) % MOD;
			if(f[s] >= MOD) f[s] -= MOD;
		}
	}
	
	printf("%d\n", f[all]);
	
	return 0;
}
posted @ 2017-12-07 14:43  xjr01  阅读(221)  评论(0编辑  收藏  举报