[BZOJ4317]Atm的树
[BZOJ4317]Atm的树
试题描述
Atm有一段时间在虐qtree的题目,于是,他满脑子都是tree,tree,tree……
于是,一天晚上他梦到自己被关在了一个有根树中,每条路径都有边权,一个神秘的声音告诉他,每个点到其他的点有一个距离(什么是距离不用说吧),他需要对于每个点回答:从这个点出发的第k小距离是多少;
如果atm不能回答出来,那么明天4019的闹钟将不会响,4019全寝可能就迟到了,所以atm希望你帮帮他。
输入
第一行,两个正整数n,k,表示树的点数,询问的是第几小距离;
第二~n行,每行三个正整数x,y,w,表示x和y之间有一条边,x为父亲,边权为w;
输出
n行, 每行一个数,第i行输出从i开始第k小距离
输入示例
5 2 1 5 2 1 2 4 2 3 6 2 4 5
输出示例
4 5 10 9 6
数据规模及约定
100% n<=15000, 边权在1~10之间,为了方便,保证1为根;K<=5000
题解
参见这道题。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std;
const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
if(Head == Tail) {
int l = fread(buffer, 1, BufferSize, stdin);
Tail = (Head = buffer) + l;
}
return *Head++;
}
int read() {
int x = 0, f = 1; char c = Getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = Getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = Getchar(); }
return x * f;
}
#define maxn 15010
#define maxm 30010
#define maxlog 15
int n, m, head[maxn], nxt[maxm], to[maxm], dist[maxm];
void AddEdge(int a, int b, int c) {
to[++m] = b; dist[m] = c; nxt[m] = head[a]; head[a] = m;
swap(a, b);
to[++m] = b; dist[m] = c; nxt[m] = head[a]; head[a] = m;
return ;
}
int mnd[maxlog][maxn<<1], Log[maxn<<1], clo, dep[maxn], dfn[maxn];
void build(int u, int pa) {
mnd[0][dfn[u] = ++clo] = dep[u];
for(int e = head[u]; e; e = nxt[e]) if(to[e] != pa)
dep[to[e]] = dep[u] + dist[e], build(to[e], u), mnd[0][++clo] = dep[u];
return ;
}
void rmq_init() {
Log[1] = 0;
for(int i = 2; i <= clo; i++) Log[i] = Log[i>>1] + 1;
for(int j = 1; (1 << j) <= clo; j++)
for(int i = 1; i + (1 << j) - 1 <= clo; i++)
mnd[j][i] = min(mnd[j-1][i], mnd[j-1][i+(1<<j-1)]);
return ;
}
int cdist(int a, int b) {
int l = dfn[a], r = dfn[b];
if(l > r) swap(l, r);
int t = Log[r-l+1];
return dep[a] + dep[b] - (min(mnd[t][l], mnd[t][r-(1<<t)+1]) << 1);
}
#define maxnode 1800010
struct Node {
int v, r, siz;
Node() {}
Node(int _, int __): v(_), r(__) {}
};
struct Treap {
Node ns[maxnode];
int ToT, fa[maxnode], ch[maxnode][2];
void maintain(int o) {
if(!o) return ;
ns[o].siz = 1;
for(int i = 0; i < 2; i++) if(ch[o][i])
ns[o].siz += ns[ch[o][i]].siz;
return ;
}
void rotate(int u) {
int y = fa[u], z = fa[y], l = 0, r = 1;
if(z) ch[z][ch[z][1]==y] = u;
if(ch[y][1] == u) swap(l, r);
fa[u] = z; fa[y] = u; fa[ch[u][r]] = y;
ch[y][l] = ch[u][r]; ch[u][r] = y;
maintain(y); maintain(u);
return ;
}
void Insert(int& o, int v) {
if(!o) {
ns[o = ++ToT] = Node(v, rand());
return maintain(o);
}
bool d = v > ns[o].v;
Insert(ch[o][d], v); fa[ch[o][d]] = o;
if(ns[ch[o][d]].r > ns[o].r) {
int t = ch[o][d];
rotate(t); o = t;
}
return maintain(o);
}
int query(int o, int v) {
if(!o) return 0;
int ls = ch[o][0] ? ns[ch[o][0]].siz : 0;
if(v < ns[o].v) return query(ch[o][0], v);
return ls + 1 + query(ch[o][1], v);
}
} sol;
int f[maxn], siz[maxn], rt, size;
bool vis[maxn];
void getroot(int u, int pa) {
siz[u] = 1; f[u] = 0;
for(int e = head[u]; e; e = nxt[e]) if(to[e] != pa && !vis[to[e]]) {
getroot(to[e], u);
siz[u] += siz[to[e]];
f[u] = max(f[u], siz[to[e]]);
}
f[u] = max(f[u], size - siz[u]);
if(f[rt] > f[u]) rt = u;
return ;
}
void dfs(int u, int pa) {
siz[u] = 1;
for(int e = head[u]; e; e = nxt[e]) if(to[e] != pa && !vis[to[e]])
dfs(to[e], u), siz[u] += siz[to[e]];
return ;
}
int fa[maxn];
void solve(int u) {
vis[u] = 1;
for(int e = head[u]; e; e = nxt[e]) if(!vis[to[e]]) {
dfs(to[e], u);
f[rt = 0] = size = siz[to[e]]; getroot(to[e], u);
fa[rt] = u; solve(rt);
}
return ;
}
int Rt[maxn], Rtfa[maxn];
void update(int s) {
sol.Insert(Rt[s], 0);
for(int u = s; fa[u]; u = fa[u]) {
int d = cdist(s, fa[u]);
// printf("insert:: %d(fa: %d): %d\n", u, fa[u], d);
sol.Insert(Rtfa[u], d);
sol.Insert(Rt[fa[u]], d);
}
return ;
}
int query(int s, int x) {
int ans = sol.query(Rt[s], x);
// printf("base: %d\n", ans);
for(int u = s; fa[u]; u = fa[u]) {
int d = cdist(s, fa[u]);
// printf("query:: %d(fa: %d): %d (%d - %d)\n", u, fa[u], x - d, sol.query(Rt[fa[u]], x - d), sol.query(Rtfa[u], x - d));
ans += sol.query(Rt[fa[u]], x - d) - sol.query(Rtfa[u], x - d);
}
return ans;
}
int main() {
n = read(); int K = read(), sum = 0;
for(int i = 1; i < n; i++) {
int a = read(), b = read(), c = read();
AddEdge(a, b, c); sum += c;
}
build(1, 0);
rmq_init();
f[rt = 0] = size = n; getroot(1, 0);
solve(rt);
// for(int i = 1; i <= n; i++) printf("(%d)%d%c", i, fa[i], i < n ? ' ' : '\n');
for(int i = 1; i <= n; i++) update(i);
for(int i = 1; i <= n; i++) {
int l = 1, r = sum;
while(l < r) {
int mid = l + r >> 1;
if(query(i, mid) - 1 < K) l = mid + 1; else r = mid;
}
printf("%d\n", l);
}
return 0;
}
又 1A 啦 2333333!
双倍经验:BZOJ2051,改改数据范围。

浙公网安备 33010602011771号