【概率论与数理统计】第三章 多维随机变量及其分布(4)
3 两个随机变量的概率分布
3.1 两个离散型随机变量的函数的函数分布
例1:设二维随机变量\((X,Y)\)的分布律为:
| X | Y | Y | Y |
|---|---|---|---|
| X | 1 | 2 | 3 |
| 1 | \(\frac{1}{4}\) | \(\frac{1}{6}\) | \(\frac{1}{8}\) |
| 2 | \(\frac{1}{4}\) | \(\frac{1}{8}\) | \(\frac{1}{12}\) |
求:(1)\(Z_1 = X + Y\)的分布律;
(2)\(Z_2 = XY\)的分布律;
(3)\(P\{X = Y\}\)。
解:(1)\(Z_1\)可能的取值为\(\{1,2\} + \{1,2,3\} = \{2,3,4,5\}\);
事件\(\{Z_1 = 2 \}\)的概率为:\(P\{Z_1 = 2\} = P\{X = 1, Y = 1\} = \frac{1}{4}\);
事件\(\{Z_1 = 3 \}\)的概率为:\(P\{Z_1 = 3\} = P\{X = 1, Y = 2\} + P\{X=2, Y=1\} = \frac{5}{12}\);
事件\(\{Z_1 = 4 \}\)的概率为:\(P\{Z_1 = 4\} = P\{X = 1, Y = 3\} + P\{X =2, Y =2\} = \frac{1}{4}\);
事件\(\{Z_1 = 5 \}\)的概率为:\(P\{Z_1 = 5\} = P\{X = 2, Y = 3\} = \frac{1}{12}\);
因此,\(Z_1 = X + Y\)的分布律为:
| \(Z_1\) | 2 | 3 | 4 | 5 |
|---|---|---|---|---|
| P | \(\frac{1}{4}\) | \(\frac{5}{12}\) | \(\frac{1}{4}\) | \(\frac{1}{12}\) |
(2)\(Z_2\)的取值可能为\(1,2,3,4,6\)概率分别为:
\(P\{Z_2 = 1\} = P\{X=1, Y=1\} = \frac{1}{4}\)
\(P\{Z_2 = 2\} = P\{X=1, Y=2\} + P\{X=2, Y=1\} = \frac{5}{12}\)
\(P\{Z_2 = 3\} = P\{X=1, Y=3\} = \frac{1}{8}\)
\(P\{Z_2 = 4\} = P\{X=2, Y=2\} = \frac{1}{8}\)
\(P\{Z_2 = 6\} = P\{X=2, Y=3\} = \frac{1}{12}\)
于是,\(Z_2 = XY\)的概率分布律为:
| \(Z_2\) | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| P | \(\frac{1}{4}\) | \(\frac{5}{12}\) | \(\frac{1}{8}\) | \(\frac{1}{8}\) | \(\frac{1}{12}\) |
(3)事件\(\{X = Y\} = \{X=1, Y =1\} \cup \{X=2, Y=2\}\);因此:
\(P\{X = Y\} = P\{X=1, Y=1\} + P\{X=2, Y =2\} =\frac{3}{8}\)
例2:设二维随机变量\((X,Y)\)的分布律为:
| X | Y | Y | Y |
|---|---|---|---|
| X | 1 | 2 | 3 |
| 1 | \(\frac{1}{5}\) | \(0\) | \(\frac{1}{5}\) |
| 2 | \(\frac{1}{5}\) | \(\frac{1}{5}\) | \(\frac{1}{5}\) |
求:(1)\(Z=X-Y\)的分布律; (2)\(P\{X \lt Y\}\)
解:(1)\(Z\)可能的取值为\(\{0,-1,-2,1\}\),概率分别为:
\(P\{Z = -2\} = P\{X = 1, Y=3\} = \frac{1}{5}\)
\(P\{Z = -1\} = P\{X =1,Y=2\} + P\{X=2,Y=3\} = \frac{1}{5}\)
\(P\{Z = 0\} = P\{X=1, Y =1\} + P\{X=2,Y=2\} = \frac{2}{5}\)
\(P\{Z=1\} = P\{X=2,Y=1\} = \frac{1}{5}\)
于是,\(Z=X-Y\)的分布律为:
| Z | -2 | -1 | 0 | 1 |
|---|---|---|---|---|
| P | \(\frac{1}{5}\) | \(\frac{1}{5}\) | \(\frac{2}{5}\) | \(\frac{1}{5}\) |
(2)事件\(\{X \lt Y\} = \{X=1,Y=2\} \cup \{X=1,Y=3\} \cup \{X=2, Y=3\}\),所以:
\(P\{X \lt Y\} = P\{X=1,Y=2\} + P\{X=1,Y=3\} + P\{X=2, Y=3\} = \frac{2}{5}\)
也可以根据\(Z=X-Y\)的分布中\(Z \lt 0\)的概率得到:
\(P\{X \lt Y\} = P\{X - Y \lt 0\} = P\{X-Y = -2\} + \P\{X-Y = -1\} = \frac{2}{5}\)
例3:设随机变量\(X\)与\(Y\)相互独立,分别服从参数为\(\lambda_1,\ \lambda_2\)的泊松分布,证明:\(Z = X + Y\)服从参数为\(\lambda = \lambda_1 + \lambda_2\)的泊松分布。
证明:由已知得:
\(P\{X=k\} = \frac{\lambda_1^k e^{-\lambda_1}}{k!},\ \ P\{Y=k\} = \frac{\lambda_2^k e^{-\lambda_2}}{k!};\ \ k=0,1,2,...\)
事件\(\{Z=k\} = \{X=0,Y=k\} \cup \{X=1,Y=k-1\} \cup ... \cup \{X=k,Y=0\}\)则:
\(P\{Z=k\} = P\{X=0,Y=k\} + P\{X=1,Y=k-1\} + ... + P\{X=k,Y=0\} = \sum_{i=0}^{k} P\{X=i, Y=k-i\}\)
因为\(X\)与\(Y\)相互独立,所以:
\(P\{X=i,Y=k-i\} = P\{X=i\} \cdot P\{Y=k-i\}\) 因此:
因此,\(Z = X + Y\)服从参数为\(\lambda = \lambda_1 + \lambda_2\)的泊松分布。
3.2 两个相互独立的连续型随机变量之和的概率分布
例4:设\(X\)与\(Y\)是两个相互独立的连续型随机变量,\(X\)在\([0,1]\)上服从均匀分布,\(Y\)的概率密度为:
求:(1)\((X,Y)\)的概率密度;(2)\(P\{X+Y \le 1\}\);(3)\(P\{X+Y \le 3\}\)。
解:(1)由于\(X\)服从均匀分布,所以\(X\)的概率密度为:
又因为\(X\)与\(Y\)相互独立,所以\((X,Y)\)的概率密度为:
(2)利用(1)的结果;并画出二重积分的图像:

由此:
书上没有这么细致,我这里尽可能地详细化每一个等式变化。
(3)与(2)计算过程基本一致;图像如下:

例5:设二维随机变量\((X,Y)\)的概率密度为\(f(x,y)\),关于\(X,Y\)的边缘概率密度分别为\(f_X(x)\)和\(f_Y(y)\),\(X\)与\(Y\)相互独立,求\(Z=X+Y\)的概率密度。
解:因为\(X\)与\(Y\)相互独立,则:\(f(x,y) = f_X(x) \cdot f_Y(y)\);\(Z = X+Y\)的分布函数为:
\(F_Z(z) = P\{Z \le z\} = P\{X+Y \le z\} = \iint_{x+y \le z} f(x,y) dxdy \\\)
接下来画图(合理假定\(z\)是正数,实际上\(z\)是正是负与最终结果无关的):

因此,上述等式可以转化为:
因此:\(f_Z(z) = {F_Z}'(z) = \int_{-\infty}^{+\infty} f(x,z-x) dx\);
同理:\(f_Z(z) = {F_Z}'(z) = \int_{-\infty}^{+\infty} f(z-y,y) dy\)。
当\(X\)与\(Y\)相互独立时可以表示为:
$f_Z(z) = {F_Z}'(z) = \int_{-\infty}^{+\infty} f(x,z-x) dx = \int_{-\infty}^{+\infty} f_X(x) \cdot f_Y(z-x) dx $;
$f_Z(z) = {F_Z}'(z) = \int_{-\infty}^{+\infty} f(z-y,y) dy = \int_{-\infty}^{+\infty} f_X(z-y) \cdot f_Y(y) dy $。
这也被称作:独立随机变量和的卷积公式。
例6:设随机变量\(X\)与\(Y\)相互独立,都服从标准正态分布\(N(0,1)\),求\(Z=X+Y\)的概率密度。
解:由题目知,\(X\)与\(Y\)的概率密度分别为:
\(f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},\ \ -\infty \lt x \lt +\infty;\ \ \ \ f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}},\ \ -\infty \lt y \lt +\infty\)
又因\(X\)与\(Y\)相互独立,所以\((X,Y)\)的概率密度为:
\(f(x,y) = f_X(x) \cdot f_Y(y) = \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}},\ \ -\infty \lt x,y \lt +\infty\)
得\(Z=X+Y\)的概率为:
这里补充个重要的等式:\(\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}\),所以:
\(f_Z(z) = \frac{1}{2\pi} \cdot e^{-\frac{z^2}{4}} \cdot \sqrt{\pi} = \frac{1}{2\sqrt{\pi}} \cdot e^{-\frac{z^2}{4}} = \frac{1}{\sqrt{2\pi} \sqrt{2}} \cdot e^{-\frac{(z-0)^2}{2(\sqrt{2})^2}}\)
即:\(Z \sim N(0,2)\)
\(\bigstar \bigstar \bigstar \bigstar \bigstar\)
一般地,\(X \sim N(\mu,\sigma_1^2),\ \ Y \sim N(\mu, \sigma_2^2)\)且\(X\)与\(Y\)相互独立,则\(Z = X+Y\)仍然服从正态分布,\(Z \sim N(\mu_1 + \mu_2,\ \sigma_1^2 + \sigma_2^2)\);且可推广到\(n\)个或无限个独立正态分布的随机变量的情形,即:
当\(X_i \sim N(\mu_i,\ \sigma_i^2),\ \ i=1,2,...,n,...\)且它们之间是相互独立的则可知:\(X_1+X_2+...+X_n \sim N(\sum_{i=1}^{n} \mu_i,\ \sum_{i=1}^{n} \sigma_i^2)\)且更进一步证明任意有限个独立正态随机变量的线性组合仍服从正态分布,即:
若\(X_k \sim N(\mu_k,\ \sigma_k^2),\ \ k=1,2,...,n\)且它们之间是相互独立的则可知:\(a_1X_1+a_2X_2+...+a_nX_n \sim N(\sum_{i=1}^{n} a_i\mu_i,\ \sum_{i=1}^{n} (a_i\sigma_i)^2)\),其中\(a_1,a_2,...,a_n\)为任意实数。
这里是很重要的结论!!
例7:设\(X \sim N(0,1),\ Y \sim N(1,1),\ Z \sim N(1,2)\),随机变量\(X,Y,Z\)间相互独立,求\(3X+2Y+Z\)的分布。
解:由于随机变量\(X,Y,Z\)间相互独立且都服从中泰分布,则:
\(3X+2Y+Z \sim N(3\cp 0+2\cp 1+ 1\cp 1,\ (3\cp 1)^2+(2\cp 1)^2+(1\cp 2)^2) = N(3,\ 17)\)
教材上结果是\(N(3,15)\)明显是错误的。
本文来自博客园,作者:夏明亮,转载请注明原文链接:https://www.cnblogs.com/xiaml/articles/18674648

浙公网安备 33010602011771号