【♨Java基础】Java基础知识面试题

JVM vs JDK vs JRE

JVM

Java 虚拟机(JVM)是运行 Java 字节码的虚拟机。JVM 有针对不同系统的特定实现(Windows,Linux,macOS),目的是使用相同的字节码,它们都会给出相同的结果。字节码和不同系统的 JVM 实现是 Java 语言“一次编译,随处可以运行”的关键所在。

JVM 并不是只有一种!只要满足 JVM 规范,每个公司、组织或者个人都可以开发自己的专属 JVM。 也就是说我们平时接触到的 HotSpot VM 仅仅是是 JVM 规范的一种实现而已。

JDK 和 JRE

JDK 是 Java Development Kit 缩写,它是功能齐全的 Java SDK。它拥有 JRE 所拥有的一切,还有编译器(javac)和工具(如 javadoc 和 jdb)。它能够创建和编译程序

JRE 是 Java 运行时环境。它是运行已编译 Java 程序所需的所有内容的集合,包括 Java 虚拟机(JVM),Java 类库,java 命令和其他的一些基础构件。但是,它不能用于创建新程序

如果你只是为了运行一下 Java 程序的话,那么你只需要安装 JRE 就可以了。如果你需要进行一些 Java 编程方面的工作,那么你就需要安装 JDK 了。但是,这不是绝对的。有时,即使您不打算在计算机上进行任何 Java 开发,仍然需要安装 JDK。例如,如果要使用 JSP 部署 Web 应用程序,那么从技术上讲,您只是在应用程序服务器中运行 Java 程序。那你为什么需要 JDK 呢?因为应用程序服务器会将 JSP 转换为 Java servlet,并且需要使用 JDK 来编译 servlet。

什么是字节码?采用字节码的好处是什么?

在 Java 中,JVM 可以理解的代码就叫做字节码(即扩展名为 .class 的文件),它不面向任何特定的处理器,只面向虚拟机。Java 语言通过字节码的方式,在一定程度上解决了传统解释型语言执行效率低的问题,同时又保留了解释型语言可移植的特点。所以, Java 程序运行时相对来说还是高效的(不过,和 C++,Rust,Go 等语言还是有一定差距的),而且,由于字节码并不针对一种特定的机器,因此,Java 程序无须重新编译便可在多种不同操作系统的计算机上运行。

在这一步 JVM 类加载器首先加载字节码文件,然后通过解释器逐行解释执行,这种方式的执行速度会相对比较慢。而且,有些方法和代码块是经常需要被调用的(也就是所谓的热点代码),所以后面引进了 JIT(just-in-time compilation) 编译器,而 JIT 属于运行时编译。当 JIT 编译器完成第一次编译后,其会将字节码对应的机器码保存下来,下次可以直接使用。

Oracle JDK vs OpenJDK

  • OpenJDK 是一个参考模型并且是完全开源的,而 Oracle JDK 是 OpenJDK 的一个实现,并不是完全开源的;
  • Oracle JDK 比 OpenJDK 更稳定:OpenJDK 和 Oracle JDK 的代码几乎相同, Oracle JDK 有更多的类和一些错误修复
  • 在响应性和 JVM 性能方面,Oracle JDK 与 OpenJDK 相比提供了更好的性能;
  • Oracle JDK 不会为即将发布的版本提供长期支持,用户每次都必须通过更新到最新版本获得支持来获取最新版本
  • Oracle JDK 使用 BCL/OTN 协议获得许可,而 OpenJDK 根据 GPL v2 许可获得许可。

既然 Oracle JDK 这么好,那为什么还要有 OpenJDK?

  • OpenJDK 是开源的,开源意味着你可以对它根据你自己的需要进行修改、优化
  • OpenJDK 是商业免费的,虽然 Oracle JDK 也是商业免费(比如 JDK 8),但并不是所有版本都是免费的
  • OpenJDK 更新频率更快。Oracle JDK 一般是每 6 个月发布一个新版本,而 OpenJDK 一般是每 3 个月发布一个新版本。

字符型常量和字符串常量的区别?

字符常量是单引号引起的一个字符,字符串常量是双引号引起的 0 个或若干个字符。

字符常量相当于一个整型值( ASCII 值),可以参加表达式运算; 字符串常量代表一个地址值(该字符串在内存中存放位置)。

字符常量只占 2 个字节; 字符串常量占若干个字节。

char 在 Java 中占两个字节

静态方法为什么不能调用非静态成员?

静态方法是属于类的,在类加载的时候就会分配内存,可以通过类名直接访问。而非静态成员属于实例对象,只有在对象实例化之后才存在,需要通过类的实例对象去访问。

在类的非静态成员不存在的时候静态成员就已经存在了,此时调用在内存中还不存在的非静态成员,属于非法操作。

重载和重写的区别

方法的重载和重写都是实现多态的方式,区别在于前者实现的是编译时的多态性,而后者实现的是运行时的多态性

(1)重载是同一个类中多个同名方法根据不同的传参来执行不同的逻辑处理。Java允许重载任何方法, 而不只是构造器方法。重载的方法不能根据返回类型和访问修饰符进行区分

(2)重写发生在运行期,是子类对父类的允许访问的方法的实现过程进行重新编写。

  • 方法名、参数列表必须相同,子类方法返回值类型应比父类方法返回值类型更小或相等,抛出的异常范围小于等于父类访问修饰符范围大于等于父类
  • 如果父类方法访问修饰符为 private/final/static 则子类就不能重写该方法,但是被 static 修饰的方法能够被再次声明。(编译器编译时不报错,但是此时这个子类方法是属于重新声明方法,而不是重写它。此时静态方法是没有多态的)
  • 构造方法无法被重写

关于 重写的返回值类型 的说明:如果方法的返回类型是 void 和基本数据类型,则返回值重写时不可修改。但是如果方法的返回值是引用类型,重写时是可以返回该引用类型的子类的。

访问修饰符 public,private,protected,以及不写(默认)时的区别?

五大基本原则

单一职责原则SRP(Single Responsibility Principle)

是指一个类的功能要单一,不能包罗万象。

开放封闭原则OCP(Open-Close Principle)

一个模块在扩展性方面应该是开放的而在更改性方面应该是封闭的

比如:一个网络模块,原来只是服务端功能,而现在要加入客户端功能,那么应当在不用修改服务端功能代码的前提下,就能够增加客户端功能的实现代码,这要求在设计之初,就应当将服务端和客户端分开,公共部分抽象出来。

里式替换原则LSP(the Liskov Substitution Principle LSP)

子类应当可以替换父类并出现在父类能够出现的任何地方。

依赖倒置原则DIP(the Dependency Inversion Principle DIP)

具体依赖抽象,上层依赖下层。

假设B是较A低的模块,但B需要使用到A的功能,这个时候,B不应当直接使用A中的具体类,而应当由B定义一抽象接口,并由A来实现这个抽象接口,B只使用这个抽象接口,这样就达到了依赖倒置的目的,B也解除了对A的依赖,反过来是A依赖于B定义的抽象接口。通过上层模块难以避免依赖下层模块,假如B也直接依赖A的实现,那么就可能造成循环依赖。一个常见的问题就是编译A模块时需要直接包含到B模块的cpp文件,而编译B时同样要直接包含到A的cpp文件。

接口分离原则ISP(the Interface Segregation Principle ISP)

模块间要通过抽象接口隔离开,而不是通过具体的类强耦合起来。

什么是可变长参数?

从 Java5 开始,Java 支持定义可变长参数,所谓可变长参数就是允许在调用方法时传入不定长度的参数。(参数语法:printVariable(String... args))

另外,可变参数只能作为函数的最后一个参数,但其前面可以有也可以没有任何其他参数。

遇到方法重载的情况怎么办呢?会优先匹配固定参数还是可变参数的方法呢?答案是会优先匹配固定参数的方法,因为固定参数的方法匹配度更高。

Java 的可变参数编译后实际会被转换成一个数组。

Java 中的几种基本数据类型了解么?

Java 中有 8 种基本数据类型,分别为:

  • 6 种数字类型:
    • 4 种整数型:byte、short、int、long
    • 2 种浮点型:float、double
  • 1 种字符类型:char
  • 1 种布尔型:boolean。

这 8 种基本数据类型的默认值以及所占空间的大小如下:

对于 boolean,官方文档未明确定义,它依赖于 JVM 厂商的具体实现。逻辑上理解是占用 1 位,但是实际中会考虑计算机高效存储因素。

注意:

  • Java 里使用 long 类型的数据一定要在数值后面加上 L,否则将作为整型解析。
  • char a = 'h' 单引号,String a = "hello"  双引号。

这八种基本类型都有对应的包装类分别为:Byte、Short、Integer、Long、Float、Double、Character、Boolean 。

基本数据类型的运算规则

Java中有两种运算规则:自动转换;强制转换。

自动转换

自动转换就是当容量小的数据类型与容量大的数据类型做运算的时候,结果会自动提升为容量大的数据类型。

但是自动转换的前提只包括七种基本类型,不包括boolean类型的。

byte,char,short这三种数据类型进行运算的时候会自动转换为int类型。

byte,char,short--->int--->long--->float--->double

强制转换

强制转换需要用到强制转换符号()

在强制转换的时候会出现精度损失。

举例:

//定义一个short变量
//short sValue = 5;
//表达式中的svalue将自动提升为int类型,则右边的表达类型为int
//将一个int类型值赋值给short类型变量将发生错误
//sValue = sValue -2;

byte b = 40;
char c = 'a';//在ASCII码中  小写a为97
int i = 23;
double d = .314;
//右边表达式中最高等级操作数为d(double类型)
//则右边表达式的类型为double类型
double result = b + c + i + d;
//输出160.314
System.out.println(result);

int val = 3;
//右边表达式中两个操作数都是int类型,故右边表达式类型为int
//虽然23/3不能整除,但依然得到一个int类型整数
int intResult = 23 / val;
System.out.println(intResult);
//输出字符串Hello!a7
System.out.println("Hello!" + 'a' + 7);
//输出字符串104Hello!
//因为 a是数值型97 在ASCII码中A65 小写a97 空格48 7也为数值型 hello为字符串类型 加在一起为字符串
//所以输出为104Hello!
System.out.println('a'+ 7 +"Hello!");

float f=3.4;是否正确?

不正确。3.4 是双精度数,将双精度型(double)赋值给浮点型(float)属于下转型(down-casting,也称为窄化)会造成精度损失,因此需要强制类型转换 float f =(float)3.4;    或者写成 float f =3.4F;

short s1 = 1; s1 = s1 + 1;有错吗?short s1 = 1; s1 += 1;有错吗?

对于 short s1 = 1; s1 = s1 + 1;由于 1 是 int 类型,因此 s1+1 运算结果也是 int 型,需要强制转换类型才能赋值给 short 型。而 short s1 = 1; s1+= 1;可以正确编译,因为 s1+= 1;相当于 s1 = (short)(s1 + 1);其中有隐含的强制类型转换。

Java 有没有 goto?

goto 是 Java 中的保留字,在目前版本的 Java 中没有使用。

&和&&的区别

&运算符有两种用法:(1)按位与;(2)逻辑与。&&运算符是短路与运算。

逻辑与跟短路与的差别是非常巨大的,虽然二者都要求运算符左右两端的布尔值都是 true 整个表达式的值才是 true。&&之所以称为短路运算是因为,如果&&左边的表达式的值是 false,右边的表达式会被直接短路掉,不会进行运算。

注意:逻辑或运算符(|)和短路或运算符(||)的差别也是如此。

Math.round(11.5) 等于多少? Math.round(-11.5)等于多少?

Math.round(11.5)的返回值是 12,Math.round(-11.5)的返回值是-11。

round()方法可以这里理解:在参数上加 0.5,然后进行下取整。

补充:

Math.ceil():向上取整,即小数部分直接不管,整数部分加1

Math.floor():向下取整,即小数点后的直接丢掉

swtich 是否能作用在 byte 上,是否能作用在 long 上,是否能作用在 String 上?

早期的 JDK 中,switch(expr)中,expr 可以是 byte、short、char、int

从 1.5 版开始,Java 中引入了枚举类型(enum),expr 也可以是枚举,从 JDK 1.7 版开始,还可以是字符串(String)长整型(long)是不可以的

用最有效率的方法计算 2 乘以 8?

2 << 3(左移 3 位相当于乘以 2 的 3 次方,右移 3 位相当于除以 2 的 3次方)。

31 * num <==> (num << 5) - num,左移 5 位相当于乘以 2 的 5 次方(32)再减去自身就相当于乘以 31。现在的 JVM 都能自动完成这个优化。

数组有没有 length()方法?String 有没有 length()方法?

数组没有 length()方法,有 length 的属性。String 有 length()方法。JavaScript 中,获得字符串的长度是通过 length 属性得到的,这一点容易和 Java混淆。

在 Java 中,如何跳出当前的多重嵌套循环?

在最外层循环前加一个标记如 A,然后用 break A;可以跳出多重循环。

endLoop:
for(int i = 0; i < 10; i++) {
    System.out.println("外层循环,第" + i + "次");
    for(int j = 0; j < 10; j++) {
        System.out.println("内层循环,第 " + i + "-" + j + " 次");
        if(i == 1 && j == 5) {
            System.out.println("通过break标签跳出循环");
            break endLoop;
        }
    }
}

char 型变量中能不能存贮一个中文汉字?为什么?

char 类型可以存储一个中文汉字,因为 Java 中使用的编码是 Unicode(不选择任何特定的编码,直接使用字符在字符集中的编号,这是统一的唯一方法),一个 char 类型占 2 个字节(16bit),所以放一个中文是没问题的。

基本类型和包装类型的区别?

  • 成员变量包装类型不赋值就是 null ,而基本类型有默认值且不是 null。
  • 包装类型可用于泛型,而基本类型不可以。
  • 基本数据类型的局部变量存放在 Java 虚拟机栈中的局部变量表中,基本数据类型的成员变量(未被 static 修饰 )存放在 Java 虚拟机的堆中。包装类型属于对象类型,我们知道几乎所有对象实例都存在于堆中。
  • 相比于对象类型, 基本数据类型占用的空间非常小。

为什么说是几乎所有对象实例呢? 

这是因为 HotSpot 虚拟机引入了 JIT 优化之后,会对对象进行逃逸分析,如果发现某一个对象并没有逃逸到方法外部,那么就可能通过标量替换来实现栈上分配,而避免堆上分配内存

注意 : 基本数据类型存放在栈中是一个常见的误区! 基本数据类型的成员变量如果没有被 static 修饰的话(不建议这么使用,应该要使用基本数据类型对应的包装类型),就存放在堆中。

class BasicTypeVar{
    private int x;
}

包装类型的缓存机制了解么?

Java 基本数据类型的包装类型的大部分都用到了缓存机制来提升性能。

Byte,Short,Integer,Long 这 4 种包装类默认创建了数值 [-128,127] 的相应类型的缓存数据,Character 创建了数值在 [0,127] 范围的缓存数据,Boolean 直接返回 True or False。(可查看对应包装类的valueOf()方法)

两种浮点数类型的包装类 Float,Double 并没有实现缓存机制。

记住:为了避免由于缓存而带来的错误比较判断,所有整型包装类对象之间值的比较,全部使用 equals 方法比较。

自动装箱与拆箱了解吗?原理是什么?

什么是自动拆装箱?

  • 装箱:将基本类型用它们对应的引用类型包装起来;
  • 拆箱:将包装类型转换为基本数据类型;
Integer i = 10;  //装箱
int n = i;   //拆箱

装箱其实就是调用了包装类的valueOf()方法,拆箱其实就是调用了 xxxValue()方法。

因此:

  • Integer i = 10 等价于 Integer i = Integer.valueOf(10)
  • int n = i 等价于 int n = i.intValue();

注意:如果频繁拆装箱的话,也会严重影响系统的性能。我们应该尽量避免不必要的拆装箱操作。

面向对象和面向过程的区别

两者的主要区别在于解决问题的方式不同:

  • 面向过程把解决问题的过程拆成一个个方法,通过一个个方法的执行解决问题。
  • 面向对象会先抽象出对象,然后用对象执行方法的方式解决问题。

另外,面向对象开发的程序一般更易维护、易复用、易扩展。

成员变量与局部变量的区别

语法形式

从语法形式上看,成员变量是属于类的,而局部变量是在代码块或方法中定义的变量或是方法的参数;成员变量可以被 public,private,static 等修饰符所修饰,而局部变量不能被访问控制修饰符及 static 所修饰;但是,成员变量和局部变量都能被 final 所修饰。

存储方式

从变量在内存中的存储方式来看,如果成员变量是使用 static 修饰的,那么这个成员变量是属于类的,如果没有使用 static 修饰,这个成员变量是属于实例的。而对象存在于堆内存,局部变量则存在于栈内存。

生存时间

从变量在内存中的生存时间上看,成员变量是对象的一部分,它随着对象的创建而存在,而局部变量随着方法的调用而自动生成,随着方法的调用结束而消亡。

默认值

从变量是否有默认值来看,成员变量如果没有被赋初始值,则会自动以类型的默认值而赋值(一种情况例外:被 final 修饰的成员变量也必须显式地赋值),而局部变量则不会自动赋值。

静态变量和实例变量的区别

静态变量是被 static 修饰符修饰的变量,也称为类变量,它属于类,不属于类的任何一个对象,一个类不管创建多少个对象,静态变量在内存中有且仅有一个拷贝;实例变量必须依存于某一实例,需要先创建对象然后通过对象才能访问到它。静态变量可以实现让多个对象共享内存。在 Java 开发中,上下文类和工具类中通常会有大量的静态成员。

是否可以从一个静态(static)方法内部发出对非静态(non-static)方法的调用?答案是不可以,静态方法只能访问静态成员,因为非静态方法的调用要先创建对象,因此在调用静态方法时可能对象并没有被初始化。

如何理解Java中只有值传递没有引用传递

值传递:在调用方法时将实际参数拷贝一份传递到方法中,在方法中对参数进行修改并不会影响到实际参数。

引用传递:指在调用方法时将实际参数的地址直接传递到方法中,那么在方法中对参数所进行的修改,将影响到实际参数。

Java对对象采用的不是引用调用,实际上,对象引用也是按值传递的。当传的是基本类型时,传的是值的拷贝,对拷贝变量的修改不影响原变量;当传的是引用类型时,传的是引用地址的拷贝,但是拷贝的地址和真实地址指向的都是同一个真实数据,因此可以修改原变量中的值。

  • 一个方法不能修改一个基本数据类型的参数(即数值型或布尔型)
  • 一个方法可以改变一个对象参数的状态(改变值)。
  • 一个方法让对象参数重新引用一个新的对象并不会改变原参数。

当一个对象被当作参数传递到一个方法后,此方法可改变这个对象的属性,并可返回变化后的结果,那么这里到底是值传递还是引用传递?

是值传递。Java 编程语言只有值传递参数。当一个对象实例作为一个参数被传递到方法中时,参数的值就是对该对象的引用。对象的属性可以在被调用过程中被改变,但对象的引用是永远不会改变的。C++和 C#中可以通过传引用或传输出参数来改变传入的参数的值。

实现对象克隆

  • 实现 Cloneable 接口并重写 Object 类中的 clone()方法;
  • 实现 Serializable 接口,通过对象的序列化和反序列化实现克隆,可以实现真正的深度克隆

注意:基于序列化和反序列化实现的克隆不仅仅是深度克隆,更重要的是通过泛型限定,可以检查出要克隆的对象是否支持序列化,这项检查是编译器完成的,不是在运行时抛出异常,这种是方案明显优于使用 Object 类的 clone 方法克隆对象。

创建一个对象用什么运算符?对象实体与对象引用有何不同?

new 运算符,new 创建对象实例(对象实例在堆内存中),对象引用指向对象实例(对象引用存放在栈内存中)。

一个对象引用可以指向 0 个或 1 个对象(一根绳子可以不系气球,也可以系一个气球);一个对象可以有 n 个引用指向它(可以用 n 条绳子系住一个气球)。

对象的相等和引用相等的区别

  • 对象的相等一般比较的是内存中存放的内容是否相等。
  • 引用相等一般比较的是它们指向的内存地址是否相等。

类的构造方法的作用是什么?

构造方法是一种特殊的方法,主要作用是完成对象的初始化工作。

如果一个类没有声明构造方法,该程序能正确执行吗?

如果一个类没有声明构造方法,也可以执行!因为一个类即使没有声明构造方法也会有默认的不带参数的构造方法。如果我们自己添加了类的构造方法(无论是否有参),Java 就不会再添加默认的无参数的构造方法了,我们一直在不知不觉地使用构造方法,这也是为什么我们在创建对象的时候后面要加一个括号(因为要调用无参的构造方法)。如果我们重载了有参的构造方法,记得都要把无参的构造方法也写出来(无论是否用到),因为这可以帮助我们在创建对象的时候少踩坑。

构造方法有哪些特点?是否可被重写?

构造方法特点如下:

  • 名字与类名相同。
  • 没有返回值,但不能用 void 声明构造函数。
  • 生成类的对象时自动执行,无需调用。

构造方法不能被 override(重写),但是可以 overload(重载),所以你可以看到一个类中有多个构造函数的情况。

面向对象三大特征

封装

封装是指把一个对象的状态信息(也就是属性)隐藏在对象内部,不允许外部对象直接访问对象的内部信息。但是可以提供一些可以被外界访问的方法来操作属性。

继承

继承是使用已存在的类的定义作为基础建立新类的技术,新类的定义可以增加新的数据或新的功能,也可以用父类的功能,但不能选择性地继承父类。通过使用继承,可以快速地创建新的类,可以提高代码的重用,程序的可维护性,节省大量创建新类的时间 ,提高我们的开发效率。

关于继承如下 3 点请记住:

  • 子类拥有父类对象所有的属性和方法(包括私有属性和私有方法),但是父类中的私有属性和方法子类是无法访问,只是拥有
  • 子类可以拥有自己属性和方法,即子类可以对父类进行扩展。
  • 子类可以用自己的方式实现父类的方法。

多态

多态,顾名思义,表示一个对象具有多种的状态,具体表现为父类的引用指向子类的实例。

多态的特点:

  • 对象类型和引用类型之间具有继承(类)/实现(接口)的关系;
  • 引用类型变量发出的方法调用的到底是哪个类中的方法,必须在程序运行期间才能确定;
  • 多态不能调用“只在子类存在但在父类不存在”的方法;
  • 如果子类重写了父类的方法,真正执行的是子类覆盖的方法,如果子类没有覆盖父类的方法,执行的是父类的方法。

多态性分为编译时的多态性和运行时的多态性。方法重载(overload)实现的是编译时的多态性(也称为前绑定),而方法重写(override)实现的是运行时的多态性(也称为后绑定)

接口和抽象类有什么共同点和区别?

共同点

  • 都不能被实例化。
  • 都可以包含抽象方法。
  • 都可以有默认实现的方法(Java 8 可以用 default 关键字在接口中定义默认方法)。

区别

  • 接口主要用于对类的行为进行约束,你实现了某个接口就具有了对应的行为。抽象类主要用于代码复用,强调的是所属关系(比如说我们抽象了一个发送短信的抽象类,)。
  • 一个类只能继承一个类,但是可以实现多个接口。
  • 接口中的成员变量只能是 public static final 类型的,不能被修改且必须有初始值,而抽象类的成员变量默认 default,可在子类中被重新定义,也可被重新赋值。

抽象的(abstract)方法是否可同时是静态的(static),是否可同时是本地方法(native),是否可同时被 synchronized 修饰?

都不能。

抽象方法需要子类重写,而静态的方法是无法被重写的,因此二者是矛盾的。

本地方法是由本地代码(如 C 代码)实现的方法,而抽象方法是没有实现的,也是矛盾的。

synchronized 和方法的实现细节有关,抽象方法不涉及实现细节,因此也是相互矛盾的。

接口是否可继承(extends)接口? 抽象类是否可实现(implements)接口? 抽象类是否可继承具体类(concrete class)

接口可以继承接口。

抽象类可以实现(implements)接口,抽象类可继承具体类,但前提是具体类必须有明确的构造函数

一个“.java”源文件中是否可以包含多个类(不是内部类)?有什么限制?

可以,但一个源文件中最多只能有一个公开类(public class)而且文件名必须和公开类的类名完全保持一致。

Java 中的 final 关键字有哪些用法?

  • 修饰类:表示该类不能被继承;
  • 修饰方法:表示方法不能被重写;
  • 修饰变量:表示变量只能一次赋值以后值不能被修改(常量)。

深拷贝和浅拷贝区别了解吗?什么是引用拷贝?

  • 浅拷贝:浅拷贝会在堆上创建一个新的对象(区别于引用拷贝的一点),不过,如果原对象内部的属性是引用类型的话,浅拷贝会直接复制内部对象的引用地址,也就是说拷贝对象和原对象共用同一个内部对象。
  • 深拷贝:深拷贝会完全复制整个对象,包括这个对象所包含的内部对象。

浅拷贝

很简单,就是实现了 Cloneable 接口,并重写了 clone() 方法。

public class Address implements Cloneable{
    private String name;
    // 省略构造函数、Getter&Setter方法
    @Override
    public Address clone() {
        try {
            return (Address) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new AssertionError();
        }
    }
}

public class Person implements Cloneable {
    private Address address;
    // 省略构造函数、Getter&Setter方法
    @Override
    public Person clone() {
        try {
            Person person = (Person) super.clone();
            return person;
        } catch (CloneNotSupportedException e) {
            throw new AssertionError();
        }
    }
}

深拷贝

我们对 Person 类的 clone() 方法进行修改,连带着要把 Person 对象内部的 Address 对象一起复制。 

@Override
public Person clone() {
    try {
        Person person = (Person) super.clone();
        person.setAddress(person.getAddress().clone());
        return person;
    } catch (CloneNotSupportedException e) {
        throw new AssertionError();
    }
}

那什么是引用拷贝呢? 简单来说,引用拷贝就是两个不同的引用指向同一个对象。 

 

Object

Object 类的常见方法有哪些?

/**
 * native 方法,用于返回当前运行时对象的 Class 对象,使用了 final 关键字修饰,故不允许子类重写。
 */
public final native Class<?> getClass()
/**
 * native 方法,用于返回对象的哈希码,主要使用在哈希表中,比如 JDK 中的HashMap。
 */
public native int hashCode()
/**
 * 用于比较 2 个对象的内存地址是否相等,String 类对该方法进行了重写以用于比较字符串的值是否相等。
 */
public boolean equals(Object obj)
/**
 * naitive 方法,用于创建并返回当前对象的一份拷贝。
 */
protected native Object clone() throws CloneNotSupportedException
/**
 * 返回类的名字实例的哈希码的 16 进制的字符串。建议 Object 所有的子类都重写这个方法。
 */
public String toString()
/**
 * native 方法,并且不能重写。唤醒一个在此对象监视器上等待的线程(监视器相当于就是锁的概念)。如果有多个线程在等待只会任意唤醒一个。
 */
public final native void notify()
/**
 * native 方法,并且不能重写。跟 notify 一样,唯一的区别就是会唤醒在此对象监视器上等待的所有线程,而不是一个线程。
 */
public final native void notifyAll()
/**
 * native方法,并且不能重写。暂停线程的执行。注意:sleep 方法没有释放锁,而 wait 方法释放了锁 ,timeout 是等待时间。
 */
public final native void wait(long timeout) throws InterruptedException
/**
 * 多了 nanos 参数,这个参数表示额外时间(以毫微秒为单位,范围是 0-999999)。 所以超时的时间还需要加上 nanos 毫秒。。
 */
public final void wait(long timeout, int nanos) throws InterruptedException
/**
 * 跟之前的2个wait方法一样,只不过该方法一直等待,没有超时时间这个概念
 */
public final void wait() throws InterruptedException
/**
 * 实例被垃圾回收器回收的时候触发的操作
 */
protected void finalize() throws Throwable { }

== 和 equals() 的区别

== 对于基本类型和引用类型的作用效果是不同的:

  • 对于基本数据类型来说,== 比较的是值。
  • 对于引用数据类型来说,== 比较的是对象的内存地址。

因为 Java 只有值传递,所以,对于 == 来说,不管是比较基本数据类型,还是引用数据类型的变量,其本质比较的都是值,只是引用类型变量存的值是对象的地址。

equals() 不能用于判断基本数据类型的变量,只能用来判断两个对象是否相等。equals()方法存在于Object类中,而Object类是所有类的直接或间接父类,因此所有的类都有equals()方法。

equals() 方法存在两种使用情况:

  • 类没有重写 equals()方法 :通过equals()比较该类的两个对象时,等价于通过“==”比较这两个对象,使用的默认是 Object类equals()方法
  • 类重写了 equals()方法 :一般我们都重写 equals()方法来比较两个对象中的属性是否相等;若它们的属性相等,则返回 true(即,认为这两个对象相等)。

String 中的 equals 方法是被重写过的,String 的 equals 方法比较的是对象的值。

当创建 String 类型的对象时,虚拟机会在常量池中查找有没有已经存在的值和要创建的值相同的对象,如果有就把它赋给当前引用。如果没有就在常量池中重新创建一个 String 对象。

hashCode() 有什么用?

hashCode() 的作用是获取哈希码(int 整数),也称为散列码。这个哈希码的作用是确定该对象在哈希表中的索引位置。

hashCode()定义在 JDK 的 Object 类中,这就意味着 Java 中的任何类都包含有 hashCode() 函数。另外需要注意的是:Object 的 hashCode() 方法是本地方法,也就是用 C 语言或 C++ 实现的,该方法通常用来将对象的内存地址转换为整数之后返回。

散列表存储的是键值对(key-value),它的特点是:能根据“键”快速的检索出对应的“值”。这其中就利用到了散列码!(可以快速找到所需要的对象)

为什么要有 hashCode?

我们以“HashSet 如何检查重复”为例子来说明为什么要有 hashCode?

当你把对象加入 HashSet 时,HashSet 会先计算对象的 hashCode 值来判断对象加入的位置,同时也会与其他已经加入的对象的 hashCode 值作比较,如果没有相符的 hashCode,HashSet 会假设对象没有重复出现。但是如果发现有相同 hashCode 值的对象,这时会调用 equals() 方法来检查 hashCode 相等的对象是否真的相同。如果两者相同,HashSet 就不会让其加入操作成功。如果不同的话,就会重新散列到其他位置。这样我们就大大减少了 equals 的次数,相应就大大提高了执行速度。

其实, hashCode() 和 equals()都是用于比较两个对象是否相等。

那为什么 JDK 还要同时提供这两个方法呢?

这是因为在一些容器(比如 HashMap、HashSet)中,有了 hashCode() 之后,判断元素是否在对应容器中的效率会更高

前面也提到了添加元素进HashSet的过程,如果 HashSet 在对比的时候,同样的 hashCode 有多个对象,它会继续使用 equals() 来判断是否真的相同。也就是说 hashCode 帮助我们大大缩小了查找成本。

那为什么不只提供 hashCode() 方法呢?

这是因为两个对象的hashCode 值相等并不代表两个对象就相等

那为什么两个对象有相同的 hashCode 值,它们也不一定是相等的?

因为 hashCode() 所使用的哈希算法也许刚好会让多个对象传回相同的哈希值。越糟糕的哈希算法越容易碰撞,但这也与数据值域分布的特性有关(所谓哈希碰撞也就是指的是不同的对象得到相同的 hashCode )。

总结下来就是 :

  • 如果两个对象的hashCode 值相等,那这两个对象不一定相等(哈希碰撞)。
  • 如果两个对象的hashCode 值相等并且equals()方法也返回 true,我们才认为这两个对象相等。
  • 如果两个对象的hashCode 值不相等,我们就可以直接认为这两个对象不相等。

为什么重写 equals() 时必须重写 hashCode() 方法?

因为两个相等的对象的 hashCode 值必须是相等。也就是说如果 equals 方法判断两个对象是相等的,那这两个对象的 hashCode 值也要相等。

如果重写 equals() 时没有重写 hashCode() 方法的话就可能会导致 equals 方法判断是相等的两个对象,hashCode 值却不相等。

重写 equals() 时没有重写 hashCode() 方法的话,使用 HashMap 可能会出现什么问题?

  • 在查询元素时可能会出现查询不到元素的情况,即使使用的是正确的键。这是因为在使用 HashMap 时,会根据键的哈希值来查找元素,而如果没有重写 hashCode() 方法,那么每个对象的哈希值都会相同,导致 HashMap 无法准确地找到对应的元素。
  • 如果在 HashMap 中插入了大量的元素,但是哈希值都相同,那么会导致大量的冲突,使得查找的效率降低。

String

String、StringBuffer、StringBuilder 的区别?

可变性

String 是不可变的。

StringBuilder 与 StringBuffer 都继承自 AbstractStringBuilder 类,在 AbstractStringBuilder 中也是使用字符数组保存字符串,不过没有使用 final 和 private 关键字修饰,最关键的是这个 AbstractStringBuilder类还提供了很多修改字符串的方法,比如 append 方法。

线程安全性

String 中的对象是不可变的,也就可以理解为常量,线程安全。AbstractStringBuilder 是 StringBuilder 与 StringBuffer 的公共父类,定义了一些字符串的基本操作,如 expandCapacity、append、insert、indexOf 等公共方法。StringBuffer 对方法加了同步锁或者对调用的方法加了同步锁(添加了synchronized关键字),所以是线程安全的。StringBuilder 并没有对方法进行加同步锁,所以是非线程安全的。

性能

每次对 String 类型进行改变的时候,都会生成一个新的 String 对象,然后将指针指向新的 String 对象。StringBuffer 每次都会对 StringBuffer 对象本身进行操作,而不是生成新的对象并改变对象引用。相同情况下使用 StringBuilder 相比使用 StringBuffer 仅能获得 10%~15% 左右的性能提升,但却要冒多线程不安全的风险。

对于三者使用的总结:

  • 操作少量的数据:适用 String
  • 单线程操作字符串缓冲区下操作大量数据:适用 StringBuilder
  • 多线程操作字符串缓冲区下操作大量数据:适用 StringBuffer

String 为什么是不可变的?

String 类中使用 final 关键字修饰字符数组来保存字符串。

我们知道被 final 关键字修饰的类不能被继承,修饰的方法不能被重写,修饰的变量是基本数据类型则值不能改变,修饰的变量是引用类型则不能再指向其他对象。因此,final 关键字修饰的数组保存字符串并不是 String 不可变的根本原因,因为这个数组保存的字符串是可变的(final 修饰引用类型变量的情况)。

String 真正不可变有下面几点原因:

  1. 保存字符串的数组被 final 修饰且为私有的,并且String 类没有提供/暴露修改这个字符串的方法。
  2. String 类被 final 修饰导致其不能被继承,进而避免了子类破坏 String 不可变。

字符串拼接用“+” 还是 StringBuilder?

字符串对象通过“+”的字符串拼接方式,实际上是通过 StringBuilder 调用 append() 方法实现的,拼接完成之后调用 toString() 得到一个 String 对象 。

不过,在循环内使用“+”进行字符串的拼接的话,存在比较明显的缺陷:编译器不会创建单个 StringBuilder 以复用,会导致创建过多的 StringBuilder 对象。

如果直接使用 StringBuilder 对象进行字符串拼接的话,就不会存在这个问题了。

字符串常量池的作用了解吗?

字符串常量池是JVM 为了提升性能和减少内存消耗针对字符串(String 类)专门开辟的一块区域,主要目的是为了避免字符串的重复创建

String s1 = new String("abc");这句话创建了几个字符串对象?

String s1 = new String("abc");// 堆内存的地址值
String s2 = "abc"; //常量池的内存
System.out.println(s1 == s2);// 输出false,因为一个是堆内存,一个是常量池的内存,故两者是不同的。
System.out.println(s1.equals(s2));// 输出true

会创建 1 或 2 个字符串对象。

如果字符串常量池中不存在字符串对象“abc”的引用,那么会创建 2 个字符串对象“abc”

String s1 = new String("abc"); 
String s2 = "abc";
  • 如果字符串常量池中没有abc,就会在堆中创建一个对象
  • 同时在字符串常量池中也会创建一个abc
  • 然后用堆中的对象来引用字符常量池中的对象(返回的是堆中内存地址)

如果字符串常量池中已存在字符串对象“abc”的引用,则只会在堆中创建 1 个字符串对象“abc”。

String s2 = "abc";
String s1 = new String("abc"); 
  • 如果字符串常量池中有abc,就只会在堆中创建一个对象,然后用堆中的对象来引用已经存在的字符常量池中的对象。(返回堆中的内存地址)

intern 方法有什么作用?

String.intern() 是一个 native(本地)方法。

如果字符串常量池中已经包含一个等于此String对象的字符串,则返回常量池中这个字符串的String对象;否则将此String对象包含的字符串添加到常量池中,并且返回此String对象的引用。(常量池中的内存地址)

String str1 = new String("abc"); //创建一个堆对象和一个常量池对象
String str2 = "abc";
System.out.println(str1 == str2);
System.out.println(str1.intern() == str2); //intern()返回的是常量池中字符串对象的引用,所以str1与str2相等

String 类型的变量和常量做“+”运算时发生了什么?

对于编译期可以确定值的字符串,也就是常量字符串 ,jvm会将其存入字符串常量池。并且,字符串常量拼接得到的字符串常量在编译阶段就已经被存放字符串常量池,这个得益于编译器的优化。

在编译过程中,Javac 编译器(下文中统称为编译器)会进行一个叫做 常量折叠(Constant Folding) 的代码优化。

常量折叠会把常量表达式的值求出来作为常量嵌在最终生成的代码中,这是 Javac 编译器会对源代码做的极少量优化措施之一(代码优化几乎都在即时编译器中进行)。

对于 String str3 = "str" + "ing"; 编译器会给你优化成 String str3 = "string"; 。

并不是所有的常量都会进行折叠,只有编译器在程序编译期就可以确定值的常量才可以:

  • 基本数据类型( byte、boolean、short、char、int、float、long、double)以及字符串常量。
  • final 修饰的基本数据类型和字符串变量
  • 字符串通过 “+”拼接得到的字符串、基本数据类型之间算数运算(加减乘除)、基本数据类型的位运算(<<、>>、>>> )

引用的值在程序编译期是无法确定的,编译器无法对其进行优化。

对象引用和“+”的字符串拼接方式,实际上是通过 StringBuilder 调用 append() 方法实现的,拼接完成之后调用 toString() 得到一个 String 对象 。

不过,字符串使用 final 关键字声明之后,可以让编译器当做常量来处理。

final String str1 = "str";
final String str2 = "ing";
// 下面两个表达式其实是等价的
String c = "str" + "ing";// 常量池中的对象
String d = str1 + str2; // 常量池中的对象
System.out.println(c == d);// true

被 final 关键字修改之后的 String 会被编译器当做常量来处理,编译器在程序编译期就可以确定它的值,其效果就相当于访问常量。

如果 ,编译器在运行时才能知道其确切值的话,就无法对其优化

str2 在运行时才能确定其值:

final String str1 = "str";
final String str2 = getStr();
String c = "str" + "ing";// 常量池中的对象
String d = str1 + str2; // 在堆上创建的新的对象
System.out.println(c == d);// false
public static String getStr() {
    return "ing";
}

有没有哪种情况用+做字符串连接比调用 StringBuffer / StringBuilder 对象的 append 方法性能更好?

如果连接后得到的字符串在静态存储区中是早已存在的,那么用+做字符串连接是优于 StringBuffer / StringBuilder 的 append 方法的。

Exception 和 Error 有什么区别?

在 Java 中,所有的异常都有一个共同的祖先 java.lang 包中的 Throwable 类。Throwable 类有两个重要的子类:

  • Exception:程序本身可以处理的异常,可以通过 catch 来进行捕获。Exception 又可以分为 Checked Exception (受检查异常,必须处理) 和 Unchecked Exception (不受检查异常,可以不处理)。
  • Error:Error 属于程序无法处理的错误 ,不建议通过catch捕获 。例如 Java 虚拟机运行错误(Virtual MachineError)、虚拟机内存不够错误(OutOfMemoryError)、类定义错误(NoClassDefFoundError)等 。这些异常发生时,Java 虚拟机(JVM)一般会选择线程终止。

Checked Exception 和 Unchecked Exception 有什么区别?

Checked Exception 即 受检查异常 ,Java 代码在编译过程中,如果受检查异常没有被 catch或者throws 关键字处理的话,就没办法通过编译。

除了RuntimeException及其子类以外,其他的Exception类及其子类都属于受检查异常 。常见的有:

  • java.lang.ClassNotFoundException 找不到某个类
  • java.lang.CloneNotSupportedException 不支持克隆异常,当没有实现Cloneable接口或者不支持克隆方法时,调用其clone()方法则抛出该异常。
  • java.lang.IllegalAccessException 非法访问异常
  • java.lang.InterruptedException 中断异常
  • java.lang.NoSuchFieldException 找不到当前使用的属性
  • java.lang.NoSuchMetodException 找不到当前使用的方法

Unchecked Exception 即 不受检查异常 ,Java 代码在编译过程中 ,我们即使不处理不受检查异常也可以正常通过编译。

RuntimeException 及其子类都统称为非受检查异常,常见的有:

  • java.lang.ArithmeticException 执行数学计算时产生的的异常   
  • java.lang.ClassCastException 进行强制类型转换的时候产生的异常
  • java.lang.IllegalArgumentException 非法形参异常  
  • java.lang.NumberFormatException 数字格式异常
  • java.lang.IndexOutOfBoundsException 索引越界异常,一般都是与数组、集合相关
  • java.lang.ArrayIndexOutOfBoundsException 数组下标越界
  • java.lang.StringIndexOutOfBoundsException 字符串索引越界异常,一般与字符串截取操作相关
  • java.lang.NullPointerException 空指针异常

throw 和 throws 的区别是什么

Java 中的异常处理除了包括捕获异常和处理异常之外,还包括声明异常和拋出异常,可以通过 throws 关键字在方法上声明该方法要拋出的异常,或者在方法内部通过 throw 拋出异常对象。

throws 关键字和 throw 关键字在使用上的几点区别如下:

  • throw 关键字用在方法内部,只能用于抛出一种异常,用来抛出方法或代码块中的异常,受查异常和非受查异常都可以被抛出。
  • throws 关键字用在方法声明上,可以抛出多个异常,用来标识该方法可能抛出的异常列表。一个方法用 throws 标识了可能抛出的异常列表,调用该方法的方法中必须包含可处理异常的代码,否则也要在方法签名中用 throws 关键字声明相应的异常。

Throwable 类常用方法有哪些?

  • String getMessage():返回异常发生时的简要描述
  • String toString():返回异常发生时的详细信息
  • String getLocalizedMessage():返回异常对象的本地化信息。使用 Throwable 的子类覆盖这个方法,可以生成本地化信息。如果子类没有覆盖该方法,则该方法返回的信息与 getMessage()返回的结果相同
  • void printStackTrace():在控制台上打印 Throwable 对象封装的异常信息

try-catch-finally 如何使用?

  • try块 :用于捕获异常。其后可接零个或多个 catch 块,如果没有 catch 块,则必须跟一个 finally 块。
  • catch块 :用于处理 try 捕获到的异常。
  • finally 块 :无论是否捕获或处理异常,finally 块里的语句都会被执行(前提是执行到try语句里)。当在 try 块或 catch 块中遇到 return 语句时,finally 语句块将在方法返回之前被执行。

注意:不要在 finally 语句块中使用 return! 当 try 语句和 finally 语句中都有 return 语句时,try 语句块中的 return 语句会被忽略。这是因为 try 语句中的 return 返回值会先被暂存在一个本地变量中,当执行到 finally 语句中的 return 之后,这个本地变量的值就变为了 finally 语句中的 return 返回值。

finally 中的代码一定会执行吗?

不一定的!在某些情况下,finally 中的代码不会被执行。

就比如说 finally 之前虚拟机被终止运行的话,finally 中的代码就不会被执行。

另外,在以下 2 种特殊情况下,finally 块的代码也不会被执行:

  • 程序所在的线程死亡。
  • 关闭 CPU。

如何使用 try-with-resources 代替try-catch-finally?

  • 适用范围(资源的定义):任何实现 java.lang.AutoCloseable或者 java.io.Closeable 的对象
  • 关闭资源和 finally 块的执行顺序:在 try-with-resources 语句中,任何 catch 或 finally 块在声明的资源关闭后运行

面对必须要关闭的资源,我们总是应该优先使用 try-with-resources 而不是try-finally。随之产生的代码更简短,更清晰,产生的异常对我们也更有用。try-with-resources语句让我们更容易编写必须要关闭的资源的代码,若采用try-finally则几乎做不到这点。

Java 中类似于InputStream、OutputStream 、Scanner 、PrintWriter等的资源都需要我们调用close()方法来手动关闭,一般情况下我们都是通过try-catch-finally语句来实现这个需求,如下:

//读取文本文件的内容
Scanner scanner = null;
try {
    scanner = new Scanner(new File("D://read.txt"));
    while (scanner.hasNext()) {
        System.out.println(scanner.nextLine());
    }
} catch (FileNotFoundException e) {
    e.printStackTrace();
} finally {
    if (scanner != null) {
        scanner.close();
    }
}

使用 Java 7 之后的 try-with-resources 语句改造上面的代码:

try (Scanner scanner = new Scanner(new File("test.txt"))) {
    while (scanner.hasNext()) {
        System.out.println(scanner.nextLine());
    }
} catch (FileNotFoundException fnfe) {
    fnfe.printStackTrace();
}

当然多个资源需要关闭的时候,使用 try-with-resources 实现起来也非常简单,通过使用分号分隔,可以在try-with-resources块中声明多个资源。

try (BufferedInputStream bin = new BufferedInputStream(new FileInputStream(new File("test.txt")));
     BufferedOutputStream bout = new BufferedOutputStream(new FileOutputStream(new File("out.txt")))) {
    int b;
    while ((b = bin.read()) != -1) {
        bout.write(b);
    }
}
catch (IOException e) {
    e.printStackTrace();
}

final, finally, finalize 的区别?

final:修饰符(关键字)有三种用法:如果一个类被声明为 final,意味着它不能再派生出新的子类,即不能被继承,因此它和 abstract 是反义词。将变量声明为 final,可以保证它们在使用中不被改变,被声明为 final 的变量必须在声明时给定初值,而在以后的引用中只能读取不可修改。被声明为 final 的方法也同样只能使用,不能在子类中被重写。

finally:通常放在 try…catch 的后面构造总是执行代码块,这就意味着程序无论正常执行还是发生异常,这里的代码只要 JVM 不关闭都能执行,可以将释放外部资源的代码写在 finally 块中。

finalize:Object 类中定义的方法,Java 中允许使用 finalize() 方法在垃圾收集器将对象从内存中清除出去之前做必要的清理工作。这个方法是由垃圾收集器在销毁对象时调用的,通过重写 finalize() 方法可以整理系统资源或者执行其他清理工作。

异常使用有哪些需要注意的地方?

  • 不要把异常定义为静态变量,因为这样会导致异常栈信息错乱。每次手动抛出异常,我们都需要手动 new 一个异常对象抛出。
  • 抛出的异常信息一定要有意义。
  • 建议抛出更加具体的异常,比如字符串转换为数字格式错误的时候应该抛出NumberFormatException而不是其父类IllegalArgumentException。
  • 使用日志打印异常之后就不要再抛出异常了(两者不要同时存在一段代码逻辑中)。

什么是泛型?有什么作用?

Java 泛型(Generics) 是 JDK 5 中引入的一个新特性。使用泛型参数,可以增强代码的可读性以及稳定性

编译器可以对泛型参数进行检测,并且通过泛型参数可以指定传入的对象类型。比如 ArrayList<Persion> persons = new ArrayList<Persion>() 这行代码就指明了该 ArrayList 对象只能传入 Persion 对象,如果传入其他类型的对象就会报错。

原生 List 返回类型是 Object ,需要手动转换类型才能使用,使用泛型后编译器自动转换。

泛型的使用方式有哪几种?

泛型一般有三种使用方式:泛型类、泛型接口、泛型方法

泛型类

//此处T可以随便写为任意标识,常见的如T、E、K、V等形式的参数常用于表示泛型
//在实例化泛型类时,必须指定T的具体类型
public class Generic<T>{

    private T key;

    public Generic(T key) {
        this.key = key;
    }

    public T getKey(){
        return key;
    }
}

如何实例化泛型类:

Generic<Integer> genericInteger = new Generic<Integer>(123456);

泛型接口 

public interface Generator<T> {
    public T method();
}

实现泛型接口,不指定类型:

class GeneratorImpl<T> implements Generator<T>{
    @Override
    public T method() {
        return null;
    }
}

实现泛型接口,指定类型: 

class GeneratorImpl<T> implements Generator<String>{
    @Override
    public String method() {
        return "hello";
    }
}

泛型方法

public static <E> void printArray(E[] inputArray ){
    for (E element : inputArray ){
        System.out.printf( "%s ", element );
    }
    System.out.println();
}

使用:

// 创建不同类型数组:Integer, Double 和 Character
Integer[] intArray = {1, 2, 3};
String[] stringArray = {"Hello", "World"};
printArray(intArray);
printArray(stringArray);

注意: public static <E> void printArray(E[] inputArray ) 一般被称为静态泛型方法;在 java 中泛型只是一个占位符,必须在传递类型后才能使用。类在实例化时才能真正的传递类型参数,由于静态方法的加载先于类的实例化,也就是说类中的泛型还没有传递真正的类型参数,静态的方法的加载就已经完成了,所以静态泛型方法是没有办法使用类上声明的泛型的。只能使用自己声明的 <E> 

类型擦除

Java 中的泛型基本上都是在编译器这个层次来实现的。在生成的 Java 字节代码中是不包含泛型中的类型信息的。使用泛型的时候加上的类型参数,会被编译器在编译的时候去掉

这个过程就称为类型擦除。如在代码中定义的 List<Object>和 List<String>等类型,在编译之后都会变成 List。JVM 看到的只是 List,而由泛型附加的类型信息对 JVM 来说是不可见的。

类型擦除的基本过程也比较简单,首先是找到用来替换类型参数的具体类。这个具体类一般是 Object。如果指定了类型参数的上界的话,则使用这个上界。把代码中的类型参数都替换成具体的类。

优点:消除显式的强制类型转换,提高代码可读性。

局限性:

  • 不能用基本类型实例化类型参数
  • 不能创建参数化类型的数组
  • 不能实例化类型变量

项目中哪里用到了泛型?

  • 自定义接口通用返回结果 CommonResult<T> 通过参数 T 可根据具体的返回类型动态指定结果的数据类型
  • 定义 Excel 处理类 ExcelUtil<T> 用于动态指定 Excel 导出的数据类型
  • 构建集合工具类(参考 Collections 中的 sort, binarySearch 方法)。

何为反射?

反射被称为框架的灵魂。在运行时分析类以及执行类中方法的能力。通过反射可以获取任意一个类的所有属性和方法,可以调用这些方法。

反射机制提供的功能主要有:

  • 得到一个对象所属的类;
  • 获取一个类的所有成员变量和方法;
  • 在运行时创建对象;
  • 在运行时调用对象的方法;

其实,反射机制非常重要的作用就是可以在运行时动态地创建类的对象

反射机制优缺点

  • 优点:可以让咱们的代码更加灵活、为各种框架提供开箱即用的功能提供了便利
  • 缺点:让我们在运行时有了分析操作类的能力,这同样也增加了安全问题。比如可以无视泛型参数的安全检查(泛型参数的安全检查发生在编译时)。另外,反射的性能也要稍差点,不过,对于框架来说实际是影响不大的。

Java反射API有几类?

反射 API 用来生成 JVM 中的类、接口或则对象的信息。

  • Class 类:反射的核心类,可以获取类的属性,方法等信息。
  • Field 类:java.lang.reflect 包中的类,表示类的成员变量,可以用来获取和设置类之中的属性值。
  • Method 类:java.lang.reflect 包中的类,表示类的方法,它可以用来获取类中的方法信息或者执行方法。
  • Constructor 类:java.lang.reflect 包中的类,表示类的构造方法。

反射使用步骤:获取Class对象、调用对象方法

获取Class对象的三种方式

  • 通过类的实例对象调用getClass()方法
  • 根据类名直接获取对应的Class的对象:类名.class
  • Class.forName(String className):传入的字符串参数是类的全路径名

动态代理是什么?有哪几种实现方式?

动态代理就是,在程序运行期,创建目标对象的代理对象,并对目标对象中的方法进行功能性增强的一种技术。在生成代理对象的过程中,目标对象不变,代理对象中的方法是目标对象方法的增强方法。可以理解为运行期间,对象中方法的动态拦截,在拦截方法的前后执行功能操作。

有两种动态代理方式:

  • JDK动态代理(只能是基于接口的动态代理),处理类需要实现InvocationHandler接口,由Proxy.newInstance()产生代理类
  • CGLIB动态代理(有无实现接口都可以进行代理)

反射的应用场景

平时大部分时候我们都是在写业务代码,很少会接触到直接使用反射机制的场景。

像 Spring/Spring Boot、MyBatis 等等框架中都大量使用了反射机制,这些框架中也大量使用了动态代理,而动态代理的实现也依赖反射。

为什么你使用 Spring 的时候 ,一个@Component注解就声明了一个类为 Spring Bean 呢?为什么你通过一个 @Value注解就读取到配置文件中的值呢?究竟是怎么起作用的呢?

这些都是因为你可以基于反射分析类,然后获取到类/属性/方法/方法的参数上的注解。你获取到注解之后,就可以做进一步的处理。

何为注解

Annotation (注解) 是 Java5 开始引入的新特性,可以看作是一种特殊的注释,主要用于修饰类、方法或者变量。

注解本质是一个继承了Annotation 的特殊接口

@Target(ElementType.METHOD)
@Retention(RetentionPolicy.SOURCE)
public @interface Override {

}

public interface Override extends Annotation{

}

注解只有被解析之后才会生效,常见的解析方法有两种:

  • 编译期直接扫描 :编译器在编译 Java 代码的时候扫描对应的注解并处理,比如某个方法使用@Override 注解,编译器在编译的时候就会检测当前的方法是否重写了父类对应的方法。
  • 运行期通过反射处理 :像框架中自带的注解(比如 Spring 框架的 @Value 、@Component)都是通过反射来进行处理的。

JDK 提供了很多内置的注解(比如 @Override 、@Deprecated),同时,我们还可以自定义注解。

如何自定义注解

 一个注解大致可以分为三个部分:注解体、元注解、注解属性

 在这三个主要组成部分中,注解体指定了注解的名字,而元注解则标记了该注解的使用场景、留存时间等信息,而注解属性则指明该注解拥有的属性。

注解体

与接口的声明唯一的不同是在 interface 关键字前多了一个 @ 符号。

//声明了一个名为Sweet的注解体
@Retention(RetentionPolicy.RUNTIME) 
public @interface Sweet{
}

元注解

元注解(meta-annotation)本身也是一个注解,用来标记普通注解的存留时间、使用场景、继承属性、文档生成信息。

元注解是一个特殊的注解,它是 Java 源码中就自带的注解。在Java 中只有四个元注解,它们分别是:@Target、@Retention、@Documented、@Inherited。

@Target注解

@Target 注解限定了该注解的使用场景。

它有下面这些取值:

  • ElementType.ANNOTATION_TYPE 可以给一个注解进行注解
  • ElementType.CONSTRUCTOR 可以给构造方法进行注解
  • ElementType.FIELD 可以给属性进行注解
  • ElementType.LOCAL_VARIABLE 可以给局部变量进行注解
  • ElementType.METHOD 可以给方法进行注解
  • ElementType.PACKAGE 可以给一个包进行注解
  • ElementType.PARAMETER 可以给一个方法内的参数进行注解
  • ElementType.TYPE 可以给一个类型进行注解,比如类、接口、枚举

@Retention注解

@Retention 注解用来标记这个注解的留存时间。

 可选值有:

  • RetentionPolicy.SOURCE。注解只在源码阶段保留,在编译器进行编译时它将被丢弃忽视。
  • RetentionPolicy.CLASS。注解只被保留到编译进行的时候,它并不会被加载到 JVM 中。
  • RetentionPolicy.RUNTIME。注解可以保留到程序运行的时候,它会被加载进入到 JVM 中,所以在程序运行时可以获取到它们。

@Inherited

@Inherited注解标识子类将继承父类的注解属性。

注解属性

注解属性类似于类方法的声明,注解属性里有三部分信息,分别是:属性名、数据类型、默认值。

在 @Autowired 注解中就声明了一个名为 required 的 boolean 类型数据,其默认值是 true。

public @interface Autowired {
    boolean required() default true;
}

需要注意的是,注解中定义的属性,它的数据类型必须是 8 种基本数据类型(byte、short、int、long、float、double、boolean、char)或者是类、接口、注解及它们的数组。

如何读取注解中的信息

Class<Test> testClazz = Test.class;

// 获取(类、接口、枚举、注解)上注解的
AnnotationForClass annotationForClass = testClazz.getDeclaredAnnotation(AnnotationForClass.class);
System.out.println("类上的注解的值\t" + annotationForClass.value());

// 获取类中构造器的注解
Constructor<Test> constructor = testClazz.getConstructor();
AnnotationForConstructor annotationForConstructor = constructor.getDeclaredAnnotation(AnnotationForConstructor.class);
System.out.println("类中构造器的注解的值\t" + annotationForConstructor.value());

// 获取类中字段的注解
Field nameField = testClazz.getDeclaredField("name");
AnnotationForField annotationForField = nameField.getDeclaredAnnotation(AnnotationForField.class);
System.out.println("类中字段的注解的值\t" + annotationForField.value());

// 获取类中方法的注解
Method getNameMethod = testClazz.getDeclaredMethod("getName");
AnnotationForMethod annotationForMethod = getNameMethod.getDeclaredAnnotation(AnnotationForMethod.class);
System.out.println("类中方法的注解的值\t" + annotationForMethod.value());

// 获取方法上参数的注解
Method setNameMethod = testClazz.getDeclaredMethod("setName", String.class);
AnnotationForParam annotationForParam = setNameMethod.getDeclaredAnnotation(AnnotationForParam.class);
System.out.println("类中方法的参数的注解的值\t" + annotationForParam.value());

什么是序列化?什么是反序列化?

如果我们需要持久化 Java 对象比如将 Java 对象保存在文件中,或者在网络传输 Java 对象,这些场景都需要用到序列化。

  • 序列化:将数据结构或对象转换成二进制字节流的过程
  • 反序列化:将在序列化过程中所生成的二进制字节流转换成数据结构或者对象的过程

Java 序列化中如果有些字段不想进行序列化,怎么办?

对于不想进行序列化的变量,使用 transient 关键字修饰。

transient 关键字的作用是:阻止实例中那些用此关键字修饰的的变量序列化;当对象被反序列化时,被 transient 修饰的变量值不会被持久化和恢复。 

关于 transient 还有几点注意:

  • transient 只能修饰变量,不能修饰类和方法。
  • transient 修饰的变量,在反序列化后变量值将会被置成类型的默认值。例如,如果是修饰 int 类型,那么反序列后结果就是 0。
  • static 变量因为不属于任何对象(Object),所以无论有没有 transient 关键字修饰,均不会被序列化。

序列化ID serialVersionUID有什么作用

java的序列化机制是通过在运行时判断类的serialVersionUID来验证版本一致性的。在进行反序列化时,JVM会把传来的字节流中的serialVersionUID与本地实体类中的serialVersionUID进行比较,如果相同则认为是一致的,便可以进行反序列化,否则就会报序列化版本不一致的异常。

可序列化的类可以通过声明一个名为“ serialVersionUID” 的字段来显式地声明其自己的serialVersionUID,该字段必须是静态的,且类型为long。

若不显式定义 serialVersionUID 的值,Java 会根据类细节自动生成 serialVersionUID 的值,如果对类的源代码作了修改,再重新编译,新生成的类文件的serialVersionUID的取值有可能也会发生变化。类的serialVersionUID的默认值完全依赖于Java编译器的实现,对于同一个类,用不同的Java编译器编译,也有可能会导致不同的serialVersionUID,而这会导致问题。

获取用键盘输入常用的两种方法

方法 1:通过 Scanner

Scanner input = new Scanner(System.in);
String s  = input.nextLine();
input.close();

方法 2:通过 BufferedReader

BufferedReader input = new BufferedReader(new InputStreamReader(System.in));
String s = input.readLine();

Java 中 IO 流分为几种?

  • 按照流的流向分,可以分为输入流和输出流
  • 按照操作单元划分,可以划分为字节流和字符流
  • 按照流的角色划分为节点流和处理流

Java IO 流都是从如下 4 个抽象类基类中派生出:

  • InputStream/Reader:所有的输入流的基类,前者是字节输入流,后者是字符输入流。
  • OutputStream/Writer:所有输出流的基类,前者是字节输出流,后者是字符输出流。

按操作对象分类结构图:

既然有了字节流,为什么还要有字符流?

问题本质想问:不管是文件读写还是网络发送接收,信息的最小存储单元都是字节,那为什么 I/O 流操作要分为字节流操作和字符流操作呢?

字符流是由 Java 虚拟机将字节转换得到的,问题就出在这个过程还算是非常耗时,并且,如果我们不知道编码类型就很容易出现乱码问题。所以, I/O 流就干脆提供了一个直接操作字符的接口,方便我们平时对字符进行流操作。如果音频文件、图片等媒体文件用字节流比较好,如果涉及到字符的话使用字符流比较好。

5种IO模型

阻塞 IO 模型

最传统的一种 IO 模型,即在读写数据过程中会发生阻塞现象。当用户线程发出 IO 请求之后,内核会去查看数据是否就绪,如果没有就绪就会等待数据就绪,而用户线程就会处于阻塞状态,用 户线程交出 CPU。

当数据就绪之后,内核会将数据拷贝到用户线程,并返回结果给用户线程,用户线程才解除 block 状态。典型的阻塞 IO 模型的例子为:data = socket.read();如果数据没有就绪,就会一直阻塞在 read 方法。

非阻塞 IO 模型

当用户线程发起一个 read 操作后,并不需要等待,而是马上就得到了一个结果。如果结果是一个 error 时,它就知道数据还没有准备好,于是它可以再次发送 read 操作。一旦内核中的数据准备 好了,并且又再次收到了用户线程的请求,那么它马上就将数据拷贝到了用户线程,然后返回。所以事实上,在非阻塞 IO 模型中,用户线程需要不断地询问内核数据是否就绪,也就说非阻塞 IO 不会交出 CPU,而会一直占用 CPU。典型的非阻塞 IO 模型一般如下:

while(true){
  data = socket.read();
    if(data!= error){
      处理数据
      break;
    }
}

但是对于非阻塞 IO 就有一个非常严重的问题,在 while 循环中需要不断地去询问内核数据是否就绪,这样会导致 CPU 占用率非常高,因此一般情况下很少使用 while 循环这种方式来读取数据。

多路复用 IO 模型

多路复用 IO 模型是目前使用得比较多的模型。Java NIO 实际上就是多路复用 IO。

在多路复用 IO 模型中,会有一个线程不断去轮询多个 socket 的状态,只有当 socket 真正有读写事件时,才真正调用实际的 IO 读写操作。因为在多路复用 IO 模型中,只需要使用一个线程就可以管理多个 socket,系统不需要建立新的进程或者线程,也不必维护这些线程和进程,并且只有在真正有 socket 读写事件进行时,才会使用 IO 资源,所以它大大减少了资源占用。

在 Java NIO 中,是通过 selector.select()去查询每个通道是否有到达事件,如果没有事件,则一直阻塞在那里,因此这种方式会导致用户线程的阻塞。

多路复用 IO 模式,通过一个线程就可以管理多个 socket,只有当 socket 真正有读写事件发生才会占用资源来进行实际的读写操作。因此,多路复用 IO 比较适合连接数比较多的情况

另外多路复用 IO 为何比非阻塞 IO 模型的效率高是因为在非阻塞 IO 中,不断地询问 socket 状态是通过用户线程去进行的,而在多路复用 IO 中,轮询每个 socket 状态是内核在进行的,这个效率要比用户线程要高的多。不过要注意的是,多路复用 IO 模型是通过轮询的方式来检测是否有事件到达,并且对到达的事件逐一进行响应。因此对于多路复用 IO 模型来说,一旦事件响应体很大,那么就会导致后续的事件迟迟得不到处理,并且会影响新的事件轮询。

信号驱动 IO 模型

在信号驱动 IO 模型中,当用户线程发起一个 IO 请求操作,会给对应的 socket 注册一个信号函数,然后用户线程会继续执行,当内核数据就绪时会发送一个信号给用户线程,用户线程接收到信号之后,便在信号函数中调用 IO 读写操作来进行实际的 IO 请求操作。

异步 IO 模型

异步 IO 模型才是最理想的 IO 模型,在异步 IO 模型中,当用户线程发起 read 操作之后,立刻就可以开始去做其它的事。而另一方面,从内核的角度,当它收到一个 asynchronous read 之后, 它会立刻返回,说明 read 请求已经成功发起了,因此不会对用户线程产生任何 block。然后,内核会等待数据准备完成,然后将数据拷贝到用户线程,当这一切都完成之后,内核会给用户线程发送一个信号,告诉它 read 操作完成了。也就说用户线程完全不需要实际的整个 IO 操作是如何进行的,只需要先发起一个请求,当接收内核返回的成功信号时表示 IO 操作已经完成,可以直接去使用数据了。

也就说在异步 IO 模型中,IO 操作的两个阶段都不会阻塞用户线程,这两个阶段都是由内核自动完成,然后发送一个信号告知用户线程操作已完成。用户线程中不需要再次调用 IO 函数进行具体的读写。这点是和信号驱动模型有所不同的。

JAVA NIO

NIO 主要有三大核心部分:Channel(通道),Buffer(缓冲区), Selector(选择器)

传统 IO 基于字节流和字符流进行操作,而 NIO 基于Channel 和 Buffer(缓冲区)进行操作,数据总是从通道读取到缓冲区 中,或者从缓冲区写入到通道中。

Selector(选择区)用于监听多个通道的事件(比如:连接打开, 数据到达)。因此,单个线程可以监听多个数据通道。

NIO 和传统 IO 之间第一个最大的区别是,IO 是面向流的,NIO 是面向缓冲区的。

NIO 的缓冲区

Java IO 面向流意味着每次从流中读一个或多个字节,直至读取所有字节,它们没有被缓存在任何地方。此外,它不能前后移动流中的数据。如果需要前后移动从流中读取的数据,需要先将它缓存到一个缓冲区。

NIO 的缓冲导向方法不同。数据读取到一个它稍后处理的缓冲区,需要时可在缓冲区中前后移动。这就增加了处理过程中的灵活性。但是,还需要检查是否该缓冲区中包含所有您需要处理的数据。而且,需确保当更多的数据读入缓冲区时,不要覆盖缓冲区里尚未处理的数据。

Channel

NIO中的 Channel 的主要实现有:

  • FileChannel
  • DatagramChannel
  • SocketChannel
  • ServerSocketChannel

Buffer

Buffer,顾名思义,缓冲区,实际上是一个容器,是一个连续数组。Channel 提供从文件、网络读取数据的渠道,但是读取或写入的数据都必须经由 Buffer。

在 NIO 中,Buffer 是一个顶层父类,它是一个抽象类,常用的 Buffer 的子类有:ByteBuffer、IntBuffer、 CharBuffer、 LongBuffer、 DoubleBuffer、FloatBuffer、 ShortBuffer。

Selector

Selector类是 NIO 的核心类,Selector 能够检测多个注册的通道上是否有事件发生,如果有事件发生,便获取事件然后针对每个事件进行相应的响应处理。这样一来,只是用一个单线程就可以管理多个通道,也就是管理多个连接。这样使得只有在连接真正有读写事件发生时,才会调用函数来进行读写,就大大地减少了系统开销,并且不必为每个连接都创建一个线程,不用去维护 多个线程,并且避免了多线程之间的上下文切换导致的开销。

 

posted @ 2023-04-01 15:45  残城碎梦  阅读(90)  评论(0)    收藏  举报