BZOJ4326: NOIP2015 运输计划
从题解里看到了二分才想到二分
题意为:给出一棵树和一些路线,要求你选树上一条边边权变为0后,路线中最大值最小
显然答案有单调性,二分答案
将所有长度超过 mid 的路径在树上标记出来,找出一条被所有的标记路径覆盖的边,当前答案合法条件为:max_path - maxlen <= mid
显然上边的操作可以树上差分,预处理每条路径端点的 lca 即可做到 O(n) 判断
这个 O(n) 大概是 2n ,卡卡常就好了
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cstdio>
using namespace std;
const int MAXN = 300005;
struct EDGE{
int nxt, to, val;
EDGE(int NXT = 0, int TO = 0, int VAL = 0) {nxt = NXT; to = TO; val = VAL;}
}edge[MAXN << 1];
struct QUE{
int x, y, lca, dst;
}que[MAXN];
int n, m, totedge, mxl, mnl = 0x7fffffff;
int head[MAXN], dst[MAXN], tag[MAXN], top[MAXN];
int dep[MAXN], siz[MAXN], son[MAXN], fa[MAXN];
inline int rd() {
register int x = 0;
register char c = getchar();
while(!isdigit(c)) c = getchar();
while(isdigit(c)) {
x = x * 10 + (c ^ 48);
c = getchar();
}
return x;
}
inline int mx(int x, int y) {
return (x > y ? x : y);
}
inline int mn(int x, int y) {
return (x > y ? y : x);
}
void gfs(int x) {
siz[x] = 1;
for(int i = head[x]; i; i = edge[i].nxt) if(edge[i].to != fa[x]) {
int y = edge[i].to;
dep[y] = dep[x] + 1;
dst[y] = dst[x] + edge[i].val;
fa[y] = x;
gfs(y);
siz[x] += siz[y];
if(siz[y] > siz[son[x]]) son[x] = y;
}
return;
}
void ifs(int x) {
if(!top[x]) top[x] = x;
if(son[x]) {
top[son[x]] = top[x];
ifs(son[x]);
}
for(int i = head[x]; i; i = edge[i].nxt) if(edge[i].to != son[x] && edge[i].to != fa[x]) ifs(edge[i].to);
return;
}
inline int lca(int x, int y) {
while(top[x] != top[y]) {
if(dep[top[x]] < dep[top[y]]) swap(x, y);
x = fa[top[x]];
}
return (dep[x] > dep[y] ? y : x);
}
int dfs(int x, int tot, int frm) {
int maxlen = 0;
for(int i = head[x]; i; i = edge[i].nxt) if(fa[x] != edge[i].to) {
maxlen = max(maxlen, dfs(edge[i].to, tot, i));
tag[x] += tag[edge[i].to];
}
return (tag[x] == tot) ? (mx(maxlen, edge[frm].val)) : maxlen;
}
inline bool chk(int mid) {
register int tot = 0, maxlen = 0;
register bool extra = false;
for(int i = 1; i <= n; ++i) tag[i] = 0;
for(int i = 1; i <= m; ++i) {
if(que[i].dst > mid) {
maxlen = mx(maxlen,que[i].dst);
++tot;
++tag[que[i].x]; ++tag[que[i].y];
tag[que[i].lca] -= 2;
extra = true;
}
}
if(!extra) return true;
return (maxlen - dfs(1, tot, 0) <= mid);
}
inline void hfs(int l, int r) {
int mid = 0, ans = 0;
while(l < r) {
mid = ((l + r) >> 1);
if(chk(mid)) {
ans = mid;
r = mid;
}
else l = mid + 1;
}
printf("%d\n", ans);
return;
}
int main() {
// freopen("testdata1.in", "r", stdin);
n = rd(); m = rd();
register int xx, yy, vv, tmp, N;
tmp = (n - 1) & 1; N = n - 1 - tmp;
//printf("tmp = %d, N = %d\n", tmp, N);
for(int i = 1; i <= N; i += 2) {
// printf("i = %d\n", i);
// printf("totedge = %d\n", totedge);
xx = rd(); yy = rd(); vv = rd();
mnl = mn(mnl,vv);
edge[++totedge] = EDGE(head[xx], yy, vv);
head[xx] = totedge;
edge[++totedge] = EDGE(head[yy], xx, vv);
head[yy] = totedge;
xx = rd(); yy = rd(); vv = rd();
mnl = mn(mnl,vv);
edge[++totedge] = EDGE(head[xx], yy, vv);
head[xx] = totedge;
edge[++totedge] = EDGE(head[yy], xx, vv);
head[yy] = totedge;
// printf("totedge = %d\n", totedge);
}
for(int i = 1; i <= tmp; ++i) {
xx = rd(); yy = rd(); vv = rd();
mnl = mn(mnl,vv);
edge[++totedge] = EDGE(head[xx], yy, vv);
head[xx] = totedge;
edge[++totedge] = EDGE(head[yy], xx, vv);
head[yy] = totedge;
}
dst[1] = 0; dep[1] = 1;
gfs(1);
ifs(1);
for(int i = 1; i <= m; ++i) {
que[i].x = rd(); que[i].y = rd();
que[i].lca = lca(que[i].x, que[i].y);
que[i].dst = dst[que[i].x] + dst[que[i].y] - (dst[que[i].lca] << 1);
mxl = mx(mxl,que[i].dst);
}
hfs(mnl, mxl);
return 0;
}
禁止诸如开发者知识库/布布扣/码迷/学步园/马开东等 copy 他人博文乃至博客的网站转载
,用户转载请注明出处:https://www.cnblogs.com/xcysblog/

浙公网安备 33010602011771号