爬虫scrapy
Q2Day81
性能相关
在编写爬虫时,性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待,从而使得请求整体变慢。
import requests
def fetch_async(url):
response = requests.get(url)
return response
url_list = ['http://www.github.com', 'http://www.bing.com']
for url in url_list:
fetch_async(url)
2.多线程执行
2.多线程+回调函数执行
3.多进程执行
3.多进程+回调函数执行通过上述代码均可以完成对请求性能的提高,对于多线程和多进行的缺点是在IO阻塞时会造成了线程和进程的浪费,所以异步IO回事首选:
1.asyncio示例1
1.asyncio示例2
2.asyncio + aiohttp
3.asyncio + requests
4.gevent + requests
5.grequests
6.Twisted示例
7.Tornado
from twisted.internet import reactor
from twisted.web.client import getPage
import urllib.parse
def one_done(arg):
print(arg)
reactor.stop()
post_data = urllib.parse.urlencode({'check_data': 'adf'})
post_data = bytes(post_data, encoding='utf8')
headers = {b'Content-Type': b'application/x-www-form-urlencoded'}
response = getPage(bytes('http://dig.chouti.com/login', encoding='utf8'),
method=bytes('POST', encoding='utf8'),
postdata=post_data,
cookies={},
headers=headers)
response.addBoth(one_done)
reactor.run()
以上均是Python内置以及第三方模块提供异步IO请求模块,使用简便大大提高效率,而对于异步IO请求的本质则是【非阻塞Socket】+【IO多路复用】:
import select
import socket
import time
class AsyncTimeoutException(TimeoutError):
"""
请求超时异常类
"""
def __init__(self, msg):
self.msg = msg
super(AsyncTimeoutException, self).__init__(msg)
class HttpContext(object):
"""封装请求和相应的基本数据"""
def __init__(self, sock, host, port, method, url, data, callback, timeout=5):
"""
sock: 请求的客户端socket对象
host: 请求的主机名
port: 请求的端口
port: 请求的端口
method: 请求方式
url: 请求的URL
data: 请求时请求体中的数据
callback: 请求完成后的回调函数
timeout: 请求的超时时间
"""
self.sock = sock
self.callback = callback
self.host = host
self.port = port
self.method = method
self.url = url
self.data = data
self.timeout = timeout
self.__start_time = time.time()
self.__buffer = []
def is_timeout(self):
"""当前请求是否已经超时"""
current_time = time.time()
if (self.__start_time + self.timeout) < current_time:
return True
def fileno(self):
"""请求sockect对象的文件描述符,用于select监听"""
return self.sock.fileno()
def write(self, data):
"""在buffer中写入响应内容"""
self.__buffer.append(data)
def finish(self, exc=None):
"""在buffer中写入响应内容完成,执行请求的回调函数"""
if not exc:
response = b''.join(self.__buffer)
self.callback(self, response, exc)
else:
self.callback(self, None, exc)
def send_request_data(self):
content = """%s %s HTTP/1.0\r\nHost: %s\r\n\r\n%s""" % (
self.method.upper(), self.url, self.host, self.data,)
return content.encode(encoding='utf8')
class AsyncRequest(object):
def __init__(self):
self.fds = []
self.connections = []
def add_request(self, host, port, method, url, data, callback, timeout):
"""创建一个要请求"""
client = socket.socket()
client.setblocking(False)
try:
client.connect((host, port))
except BlockingIOError as e:
pass
# print('已经向远程发送连接的请求')
req = HttpContext(client, host, port, method, url, data, callback, timeout)
self.connections.append(req)
self.fds.append(req)
def check_conn_timeout(self):
"""检查所有的请求,是否有已经连接超时,如果有则终止"""
timeout_list = []
for context in self.connections:
if context.is_timeout():
timeout_list.append(context)
for context in timeout_list:
context.finish(AsyncTimeoutException('请求超时'))
self.fds.remove(context)
self.connections.remove(context)
def running(self):
"""事件循环,用于检测请求的socket是否已经就绪,从而执行相关操作"""
while True:
r, w, e = select.select(self.fds, self.connections, self.fds, 0.05)
if not self.fds:
return
for context in r:
sock = context.sock
while True:
try:
data = sock.recv(8096)
if not data:
self.fds.remove(context)
context.finish()
break
else:
context.write(data)
except BlockingIOError as e:
break
except TimeoutError as e:
self.fds.remove(context)
self.connections.remove(context)
context.finish(e)
break
for context in w:
# 已经连接成功远程服务器,开始向远程发送请求数据
if context in self.fds:
data = context.send_request_data()
context.sock.sendall(data)
self.connections.remove(context)
self.check_conn_timeout()
if __name__ == '__main__':
def callback_func(context, response, ex):
"""
:param context: HttpContext对象,内部封装了请求相关信息
:param response: 请求响应内容
:param ex: 是否出现异常(如果有异常则值为异常对象;否则值为None)
:return:
"""
print(context, response, ex)
obj = AsyncRequest()
url_list = [
{'host': 'www.google.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
'callback': callback_func},
{'host': 'www.baidu.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
'callback': callback_func},
{'host': 'www.bing.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
'callback': callback_func},
]
for item in url_list:
print(item)
obj.add_request(**item)
obj.running()
Scrapy
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下

Scrapy主要包括了以下组件:
- 引擎(Scrapy)
用来处理整个系统的数据流处理, 触发事务(框架核心) - 调度器(Scheduler)
用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址 - 下载器(Downloader)
用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的) - 爬虫(Spiders)
爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面 - 项目管道(Pipeline)
负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。 - 下载器中间件(Downloader Middlewares)
位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。 - 爬虫中间件(Spider Middlewares)
介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。 - 调度中间件(Scheduler Middewares)
介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
Scrapy运行流程大概如下:
- 引擎从调度器中取出一个链接(URL)用于接下来的抓取
- 引擎把URL封装成一个请求(Request)传给下载器
- 下载器把资源下载下来,并封装成应答包(Response)
- 爬虫解析Response
- 解析出实体(Item),则交给实体管道进行进一步的处理
- 解析出的是链接(URL),则把URL交给调度器等待抓取
一、安装
|
1
2
3
4
5
6
7
8
9
10
|
Linux pip3 install scrapyWindows a. pip3 install wheel b. 下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted c. 进入下载目录,执行 pip3 install Twisted‑17.1.0‑cp35‑cp35m‑win_amd64.whl d. pip3 install scrapy e. 下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/ |
二、基本使用
1. 基本命令
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
1. scrapy startproject 项目名称 - 在当前目录中创建中创建一个项目文件(类似于Django)2. scrapy genspider [-t template] <name> <domain> - 创建爬虫应用 如: scrapy gensipider -t basic oldboy oldboy.com scrapy gensipider -t xmlfeed autohome autohome.com.cn PS: 查看所有命令:scrapy gensipider -l 查看模板命令:scrapy gensipider -d 模板名称3. scrapy list - 展示爬虫应用列表4. scrapy crawl 爬虫应用名称 - 运行单独爬虫应用 |
2.项目结构以及爬虫应用简介
|
1
2
3
4
5
6
7
8
9
10
11
12
|
project_name/ scrapy.cfg project_name/ __init__.py items.py pipelines.py settings.py spiders/ __init__.py 爬虫1.py 爬虫2.py 爬虫3.py |
文件说明:
- scrapy.cfg 项目的主配置信息。(真正爬虫相关的配置信息在settings.py文件中)
- items.py 设置数据存储模板,用于结构化数据,如:Django的Model
- pipelines 数据处理行为,如:一般结构化的数据持久化
- settings.py 配置文件,如:递归的层数、并发数,延迟下载等
- spiders 爬虫目录,如:创建文件,编写爬虫规则
注意:一般创建爬虫文件时,以网站域名命名
爬虫1.py
关于windows编码3. 小试牛刀
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
import scrapyfrom scrapy.selector import HtmlXPathSelectorfrom scrapy.http.request import Requestclass DigSpider(scrapy.Spider): # 爬虫应用的名称,通过此名称启动爬虫命令 name = "dig" # 允许的域名 allowed_domains = ["chouti.com"] # 起始URL start_urls = [ 'http://dig.chouti.com/', ] has_request_set = {} def parse(self, response): print(response.url) hxs = HtmlXPathSelector(response) page_list = hxs.select('//div[@id="dig_lcpage"]//a[re:test(@href, "/all/hot/recent/\d+")]/@href').extract() for page in page_list: page_url = 'http://dig.chouti.com%s' % page key = self.md5(page_url) if key in self.has_request_set: pass else: self.has_request_set[key] = page_url obj = Request(url=page_url, method='GET', callback=self.parse) yield obj @staticmethod def md5(val): import hashlib ha = hashlib.md5() ha.update(bytes(val, encoding='utf-8')) key = ha.hexdigest() return key |
执行此爬虫文件,则在终端进入项目目录执行如下命令:
|
1
|
scrapy crawl dig --nolog |
对于上述代码重要之处在于:
- Request是一个封装用户请求的类,在回调函数中yield该对象表示继续访问
- HtmlXpathSelector用于结构化HTML代码并提供选择器功能
4. 选择器
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
#!/usr/bin/env python# -*- coding:utf-8 -*-from scrapy.selector import Selector, HtmlXPathSelectorfrom scrapy.http import HtmlResponsehtml = """<!DOCTYPE html><html> <head lang="en"> <meta charset="UTF-8"> <title></title> </head> <body> <ul> <li class="item-"><a id='i1' href="link.html">first item</a></li> <li class="item-0"><a id='i2' href="llink.html">first item</a></li> <li class="item-1"><a href="llink2.html">second item<span>vv</span></a></li> </ul> <div><a href="llink2.html">second item</a></div> </body></html>"""response = HtmlResponse(url='http://example.com', body=html,encoding='utf-8')# hxs = HtmlXPathSelector(response)# print(hxs)# hxs = Selector(response=response).xpath('//a')# print(hxs)# hxs = Selector(response=response).xpath('//a[2]')# print(hxs)# hxs = Selector(response=response).xpath('//a[@id]')# print(hxs)# hxs = Selector(response=response).xpath('//a[@id="i1"]')# print(hxs)# hxs = Selector(response=response).xpath('//a[@href="link.html"][@id="i1"]')# print(hxs)# hxs = Selector(response=response).xpath('//a[contains(@href, "link")]')# print(hxs)# hxs = Selector(response=response).xpath('//a[starts-with(@href, "link")]')# print(hxs)# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]')# print(hxs)# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/text()').extract()# print(hxs)# hxs = Selector(response=response).xpath('//a[re:test(@id, "i\d+")]/@href').extract()# print(hxs)# hxs = Selector(response=response).xpath('/html/body/ul/li/a/@href').extract()# print(hxs)# hxs = Selector(response=response).xpath('//body/ul/li/a/@href').extract_first()# print(hxs)# ul_list = Selector(response=response).xpath('//body/ul/li')# for item in ul_list:# v = item.xpath('./a/span')# # 或# # v = item.xpath('a/span')# # 或# # v = item.xpath('*/a/span')# print(v) |
示例:自动登陆抽屉并点赞注意:settings.py中设置DEPTH_LIMIT = 1来指定“递归”的层数。
5. 格式化处理
上述实例只是简单的处理,所以在parse方法中直接处理。如果对于想要获取更多的数据处理,则可以利用Scrapy的items将数据格式化,然后统一交由pipelines来处理。
spiders/xiahuar.py
items
pipelines
settings对于pipeline可以做更多,如下:
自定义pipeline6.中间件
爬虫中间件
下载器中间件7. 自定制命令
- 在spiders同级创建任意目录,如:commands
- 在其中创建 crawlall.py 文件 (此处文件名就是自定义的命令)
crawlall.py - 在settings.py 中添加配置 COMMANDS_MODULE = '项目名称.目录名称'
- 在项目目录执行命令:scrapy crawlall
8. 自定义扩展
自定义扩展时,利用信号在指定位置注册制定操作
View Code9. 避免重复访问
scrapy默认使用 scrapy.dupefilter.RFPDupeFilter 进行去重,相关配置有:
|
1
2
3
|
DUPEFILTER_CLASS = 'scrapy.dupefilter.RFPDupeFilter'DUPEFILTER_DEBUG = FalseJOBDIR = "保存范文记录的日志路径,如:/root/" # 最终路径为 /root/requests.seen |
自定义URL去重操作10.其他
settings 11.TinyScrapy
twisted示例一
twisted示例二
twisted示例三
模拟scrapy框架
参考版更多文档参见:http://scrapy-chs.readthedocs.io/zh_CN/latest/index.html


浙公网安备 33010602011771号