遍历图(深度遍历和广度遍历)

一:图的存储结构

1:邻接矩阵

       使用二维数组来存储图的边的信息和权重,如下图所示的4个顶点的无向图

                                               

        从上面可以看出,无向图的边数组是一个对称矩阵。所谓对称矩阵就是n阶矩阵的元满足aij = aji。即从矩阵的左上角到右下角的主对角线为轴,右上角的元和左下角相对应的元全都是相等的。

如果换成有向图,则如图所示的五个顶点的有向图的邻接矩阵表示如下

                                

  

2:邻接表

        邻接矩阵是一种不错的图存储结构,但是对于边数相对较少的图,这种结构存在空间上的极大浪费,因此找到一种数组与链表相结合的存储方法称为邻接表。

邻接表的处理方法是这样的:

    (1)图中顶点用一个一维数组存储,当然,顶点也可以用单链表来存储,不过,数组可以较容易的读取顶点的信息,更加方便。

    (2)图中每个顶点vi的所有邻接点构成一个线性表,由于邻接点的个数不定,所以,用单链表存储,无向图称为顶点vi的边表,有向图则称为顶点vi作为弧尾的出边表

如下为无向图的邻接表表示:

从图中可以看出,顶点表的各个结点由data和firstedge两个域表示,data是数据域,存储顶点的信息,firstedge是指针域,指向边表的第一个结点,即此顶点的第一个邻接点。边表结点由adjvex和next两个域组成。adjvex是邻接点域,存储某顶点的邻接点在顶点表中的下标,next则存储指向边表中下一个结点的指针。

 

有向图的邻接表表示:

 

3:十字链表

对于邻接表来说,计算顶点的入度是不方便的,那么有没有一种存储方式能够轻松的计算顶点的入度和出度呢,答案是肯定的

在十字链表中重新定义了节点的结构:

firstin表示入边表头指针,指向该顶点的入边表中第一个结点,firstout表示出边表头指针,指向该顶点的出边表中的第一个结点

重新定义的边表结构为:

        其中,tailvex是指弧起点在顶点表的下表,headvex是指弧终点在顶点表的下标,headlink是指入边表指针域,指向终点相同的下一条边,taillink是指边表指针域,指向起点相同的下一条边。如果是网,还可以增加一个weight域来存储权值。

       比如下图,顶点依然是存入一个一维数组,实线箭头指针的图示完全与邻接表相同。就以顶点v0来说,firstout指向的是出边表中的第一个结点v3。所以,v0边表结点hearvex = 3,而tailvex其实就是当前顶点v0的下标0,由于v0只有一个出边顶点,所有headlink和taillink都是空的。

        重点需要解释虚线箭头的含义。它其实就是此图的逆邻接表的表示。对于v0来说,它有两个顶点v1和v2的入边。因此的firstin指向顶点v1的边表结点中headvex为0的结点,如上图圆圈1。接着由入边结点的headlink指向下一个入边顶点v2,如上图圆圈2。对于顶点v1,它有一个入边顶点v2,所以它的firstin指向顶点v2的边表结点中headvex为1的结点,如上图圆圈3。

    十字链表的好处就是因为把邻接表和逆邻接表整合在一起,这样既容易找到以v为尾的弧,也容易找到以v为头的弧,因而比较容易求得顶点的出度和入度。

    而且除了结构复杂一点外,其实创建图算法的时间复杂度是和邻接表相同的,因此,在有向图应用中,十字链表是非常好的数据结构模型。

    这里就介绍以上三种存储结构,除了第三种存储结构外,其他的两种存储结构比较简单

三:图的遍历

1:深度优先遍历(DFS)

它从图中某个结点v出发,访问此顶点,然后从v的未被访问的邻接点出发深度优先遍历图,直至图中所有和v有路径相通的顶点都被访问到。若图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作起始点,重复上述过程,直至图中的所有顶点都被访问到为止。

基本实现思想:

(1)访问顶点v;

(2)从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;

(3)重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。

 

递归实现

(1)访问顶点v;visited[v]=1;//算法执行前visited[n]=0

(2)w=顶点v的第一个邻接点;

(3)while(w存在)  

           if(w未被访问)

                   从顶点w出发递归执行该算法; 
           w=顶点v的下一个邻接点;

 

非递归实现

 (1)栈S初始化;visited[n]=0;

 (2)访问顶点v;visited[v]=1;顶点v入栈S

 (3)while(栈S非空)

            x=栈S的顶元素(不出栈);

            if(存在并找到未被访问的x的邻接点w)

                    访问w;visited[w]=1;

                    w进栈;

            else

                     x出栈;

 

 

2:广度优先遍历(BFS)

它是一个分层搜索的过程和二叉树的层次遍历十分相似,它也需要一个队列以保持遍历过的顶点顺序,以便按出队的顺序再去访问这些顶点的邻接顶点。

 

基本实现思想: 

(1)顶点v入队列。

(2)当队列非空时则继续执行,否则算法结束。

(3)出队列取得队头顶点v;访问顶点v并标记顶点v已被访问。

(4)查找顶点v的第一个邻接顶点col。

(5)若v的邻接顶点col未被访问过的,则col入队列。

(6)继续查找顶点v的另一个新的邻接顶点col,转到步骤(5)。

        直到顶点v的所有未被访问过的邻接点处理完。转到步骤(2)。

广度优先遍历图是以顶点v为起始点,由近至远,依次访问和v有路径相通而且路径长度为1,2,……的顶点。为了使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问,需设置队列存储访问的顶点。

 

伪代码

(1)初始化队列Q;visited[n]=0;

(2)访问顶点v;visited[v]=1;顶点v入队列Q;

(3) while(队列Q非空)   

              v=队列Q的对头元素出队;

              w=顶点v的第一个邻接点;

             while(w存在) 

                     如果w未访问,则访问顶点w;

                     visited[w]=1;

                     顶点w入队列Q;

                     w=顶点v的下一个邻接点。

 

1、深度优先搜索遍历 
思想: 
  沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。

代码如下:

package org.lxh.graph;

public class DFSTraverse {
    // 构造图的边
    private int[][] edges = { { 0, 1, 0, 0, 0, 1, 0, 0, 0 },
            { 1, 0, 1, 0, 0, 0, 1, 0, 1 }, { 0, 1, 0, 1, 0, 0, 0, 0, 1 },
            { 0, 0, 1, 0, 1, 0, 1, 1, 1 }, { 0, 0, 0, 1, 0, 1, 0, 1, 0 },
            { 1, 0, 0, 0, 1, 0, 1, 0, 0 }, { 0, 1, 0, 1, 0, 1, 0, 1, 0 },
            { 0, 0, 0, 1, 1, 0, 1, 0, 0 }, { 0, 1, 1, 1, 0, 0, 0, 0, 0 } };
    // 构造图的顶点
    private String[] vertexs = { "A", "B", "C", "D", "E", "F", "G", "H", "I" };
    // 记录被访问顶点
    private boolean[] verStatus;
    // 顶点个数
    private int vertexsNum = vertexs.length;

    public void DFSTra() {
        verStatus = new boolean[vertexsNum];
        for (int i = 0; i < vertexsNum; i++) {
            if (verStatus[i] == false) {
                DFS(i);
            }
        }
    }

    // 递归深搜
    private void DFS(int i) {
        System.out.print(vertexs[i] + " ");
        verStatus[i] = true;
        for (int j = firstAdjVex(i); j >= 0; j = nextAdjvex(i, j)) {
            if (!verStatus[j]) {
                DFS(j);
            }
        }
    }

    // 返回与i相连的第一个顶点
    private int firstAdjVex(int i) {
        for (int j = 0; j < vertexsNum; j++) {
            if (edges[i][j] > 0) {
                return j;
            }
        }
        return -1;
    }

    // 返回与i相连的下一个顶点
    private int nextAdjvex(int i, int k) {
        for (int j = (k + 1); j < vertexsNum; j++) {
            if (edges[i][j] == 1) {
                return j;
            }
        }
        return -1;
    }

    // 测试
    public static void main(String[] args) {
        new DFSTraverse().DFSTra();
    }

}

  2、广度优先搜索遍历 
思想: 
  从根节点开始,沿着树的宽度、按照层次依次遍历树的节点。

代码如下:

package org.lxh.graph;

import java.util.LinkedList;
import java.util.Queue;

public class BFSTraverse_0100 {
    // 构造图的边
    private int[][] edges = { { 0, 1, 0, 0, 0, 1, 0, 0, 0 },
            { 1, 0, 1, 0, 0, 0, 1, 0, 1 }, { 0, 1, 0, 1, 0, 0, 0, 0, 1 },
            { 0, 0, 1, 0, 1, 0, 1, 1, 1 }, { 0, 0, 0, 1, 0, 1, 0, 1, 0 },
            { 1, 0, 0, 0, 1, 0, 1, 0, 0 }, { 0, 1, 0, 1, 0, 1, 0, 1, 0 },
            { 0, 0, 0, 1, 1, 0, 1, 0, 0 }, { 0, 1, 1, 1, 0, 0, 0, 0, 0 } };
    // 构造图的顶点
    private String[] vertexs = { "A", "B", "C", "D", "E", "F", "G", "H", "I" };
    // 记录被访问顶点
    private boolean[] verStatus;
    // 顶点个数
    private int vertexsNum = vertexs.length;

    // 广搜
    private void BFS() {
        verStatus = new boolean[vertexsNum];
        Queue<Integer> temp = new LinkedList<Integer>();
        for (int i = 0; i < vertexsNum; i++) {
            if (!verStatus[i]) {
                System.out.print(vertexs[i] + " ");
                verStatus[i] = true;
                temp.offer(i);
                while (!temp.isEmpty()) {
                    int j = temp.poll();
                    for (int k = firstAdjvex(j); k >= 0; k = nextAdjvex(j, k)) {
                        if (!verStatus[k]) {
                            System.out.print(vertexs[k] + " ");
                            verStatus[k] = true;
                            temp.offer(k);
                        }
                    }
                }
            }
        }
    }

    // 返回与i相连的第一个顶点
    private int firstAdjvex(int i) {
        for (int j = 0; j < vertexsNum; j++) {
            if (edges[i][j] > 0) {
                return j;
            }
        }
        return -1;
    }

    // 返回与i相连的下一个顶点
    private int nextAdjvex(int i, int k) {
        for (int j = (k + 1); j < vertexsNum; j++) {
            if (edges[i][j] > 0) {
                return j;
            }
        }
        return -1;
    }

    // 测试
    public static void main(String args[]) {
        new BFSTraverse_0100().BFS();
    }
}

  

posted @ 2017-06-16 16:27  A小小高  阅读(1487)  评论(0)    收藏  举报