牛客周赛 Round 101(题解的token计算, 76修地铁 ,76选数,76构造,qcjj寄快递,幂中幂plus) - 指南

A题解的token计算

要记住c++中的对数函数:

  1. log(n) 是自然对数(以e为底)ln(n

  2. log10(n) 是以10为底的对

  3. log1p(n) 是ln(1+n),提供更高的数值精

  4. log2(n) 是以2为底的对

  5. logl(n)log10l(n)long double

#define _CRT_SECURE_NO_WARNINGS
#include
#include
#include
#define ll long long
using namespace std;
int main(){
ios::sync_with_stdio(false);        // 禁用同步
cin.tie(nullptr);                   // 解除cin与cout绑定
double e = 2.718281828;
double n;
cin >> n;
double w = 150 / log2l(e)* log2l(n) ;
cout << setprecision(6) << w << endl;
return 0;
}

B 76修地铁 

这题你得先理解图:黄色是普通火把;红色是红石火把;粉色是普通铁轨;灰色是动力铁

#define _CRT_SECURE_NO_WARNINGS
#include
#include
#include
#define ll long long
using namespace std;
int main(){
ios::sync_with_stdio(false);        // 禁用同步
cin.tie(nullptr);                   // 解除cin与cout绑定
int n;
cin >> n;
int w = (n / 5) * 2;//普通火把
int q = ((n + 5) / 10) * 1;//红石火把
int r = (n / 20) * 3;//普通铁轨
int t = n * 2 - r / 3 * 2;//动力铁轨
cout << w << " " << q << " " << r << " " << t << endl;
return 0;
}

C76选数 

最大值就是在n所有二进制为都满的情况下(选数的话也是选二进制对应的十进制值)

#define _CRT_SECURE_NO_WARNINGS
#include
#include
#include
#define ll long long
using namespace std;
int main(){
ios::sync_with_stdio(false);        // 禁用同步
cin.tie(nullptr);                   // 解除cin与cout绑定
ll n;
cin >> n;
ll w = 1;
ll sum = 0;
while (n > 0) {
sum += w;
n /= 2;
w *= 2;
}
cout << sum << endl;
return 0;
}

D76构造 

把他当作二进制看:

1的gcd()=1所以m为奇数 不成立 

n组成的数最大设为max_n,max_n=n的二进制位都为1;max_n<m   不成立

成立的打印:

m二进制为1的位置转化成十进制当作一个区间(先省略掉1),剩下的和1组成一个大区间

#define _CRT_SECURE_NO_WARNINGS
#include
#include
#include
#define ll long long
using namespace std;
int n, m;
int main() {
ios::sync_with_stdio(false);        // 禁用同步
cin.tie(nullptr);                   // 解除cin与cout绑定
cin >> n >> m;
int sum = 0;
int y = m;
int x = 1;
vector a;
while (y > 0) {
if (y % 2 == 1 && x != 1) {
a.push_back(x);
sum++;
}
y /= 2;
x *= 2;
}
int y0 = n;
int x0 = 1;
while (y0 > 0) {
y0 /= 2;
x0 *= 2;
}
if (m % 2 == 0 || x0 <= m) {
cout << -1 << endl;
}
else {
for (int i = 0; i < a.size(); i++) {
cout << a[i] << " ";
}
for (int i = 1; i <= n; i++) {
int j = 0;
for (j = 0; j < sum; j++) {
if (i == a[j]) {
break;
}
}
if (j == sum) {
cout << i << " ";
}
}
cout << endl;
cout << sum + 1 << endl;
for (int i = 1; i <= sum; i++) {
cout << i << " " << i << endl;
}
cout << sum + 1 << " " << n << endl;
}
return 0;
}

Eqcjj寄快递

纯纯数学题,就是求ti=2*ki+2*\frac{ei}{ki} ,然后求导,但要注意ki的最小值不能为负数

得出ki=log2l(b[i] * ln2)时,ti最小,但ki<0时不成立,ki取0

E幂中幂plus

找规律+快速幂+前缀和
m只有1e6 且每次的结果只与当前的c有关 故一定会有循环
但是不一定从第一个数开始循环

base可能很大 可以一开始先对base取一次模

前缀和下标从1开始 

#define _CRT_SECURE_NO_WARNINGS
#include
#include
#include
#define ll long long
using namespace std;
ll base, c, mod;
int q;
ll k;
ll power(ll x, ll y) {
ll sum = 1;
x %= mod;
while (y > 0) {
if (y % 2 == 1) {
sum = sum * x % mod;
}
x = x * x % mod;
y /= 2;
}
return sum;
}
int main() {
ios::sync_with_stdio(false);        // 禁用同步
cin.tie(nullptr);                   // 解除cin与cout绑定
cin >> base >> c >> mod;
base %= mod;
if (mod==1||base==0) {
cin >> q;
for (int i = 0; i > k;
cout > q;
for (int i = 0; i > k;
cout  a;
mapp;
ll w;
while (true) {
w = power(base, c);
if (p.find(w) == p.end()) {
p.insert({ w,true });
a.push_back(w);
}
else {
break;
}
c = w;
}
int j;
for (j = 0; j  b(a.size() + 1);
b[0] = 0;
for (int i = 1; i > q;
for (int i = 0; i > k;
if (k > a.size()) {
cout << ((b[a.size()] - b[j] + mod) % mod * (((k - j) / z) % mod) % mod + b[j  + (k - j) % z]) % mod << endl;
}
else {
cout << b[k ]%mod << endl;
}
}
}
return 0;
}

前缀和下标从0开始: 

/*
这种容易犯错
*/
#define _CRT_SECURE_NO_WARNINGS
#include
#include
#include
#define ll long long
using namespace std;
ll base, c, mod;
int q;
ll k;
ll power(ll x, ll y) {
ll sum = 1;
while (y > 0) {
if (y % 2 == 1) {
sum = sum * x % mod;
}
x = x * x % mod;
y /= 2;
}
return sum;
}
int main() {
ios::sync_with_stdio(false);        // 禁用同步
cin.tie(nullptr);                   // 解除cin与cout绑定
cin >> base >> c >> mod;
base %= mod;
if (mod==1||base==0) {
cin >> q;
for (int i = 0; i > k;
cout > q;
for (int i = 0; i > k;
cout  a;
mapp;
ll w;
while (true) {
w = power(base, c);
if (p.find(w) == p.end()) {
p.insert({ w,true });
a.push_back(w);
}
else {
break;
}
c = w;
}
int j;
for (j = 0; j > q;
for (int i = 0; i > k;
if (k > a.size()) {
cout = 0 ? a[j - 1] : 0)+ mod) % mod * (((k - j) / z) % mod) % mod + (j - 1 + (k - j) % z >= 0 ? a[j - 1 + (k - j) % z] : 0)) % mod << endl;
}
else {
cout << a[k - 1]%mod << endl;
}
}
}
return 0;
}

posted @ 2025-08-18 20:26  wzzkaifa  阅读(15)  评论(0)    收藏  举报