【POJ3171】Cleaning Shifts 带权区间最小覆盖

题目大意:给定一个长度为 N 的序列,求带权区间最小覆盖。

题解:设 \(dp[i]\) 表示从左端点到 i 的最小权值是多少,则状态转移为:\(dp[e[i].ed]=min\{dp[j],j\in[e[i].st-1,e[i].ed-1] \}\),初始化 \(dp[st-1]=0\) 即可。因此,这里用线段树来维护区间最小值即可。不过这道题需要注意的点有很多,首先开始区间的下标从 0 开始,因此需要注意避免下标为负数的情况,我采用了所有坐标加 1 的写法,结尾要注意所给区间排序之后末尾可能出现大于给定的结尾的情况,线段树需要维护两者较大的值。其次是状态转移时,线段树中的 modify 函数并不是直接修改值,而是需要比较一下大小再决定是否修改。(在这里WA了好长时间QAQ)

代码如下

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=1e5;
const int inf=0x3f3f3f3f;

inline int read(){
	int x=0,f=1;char ch;
	do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
	do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
	return f*x;
}

struct node{
	#define ls t[k].lc
	#define rs t[k].rc
	int lc,rc,mi;
}t[maxn<<1];
int tot=1;
int n,st,ed,ans,dp[maxn],l_b,r_b;
struct seg{
	int st,ed,w;
	bool operator<(const seg& y)const{return this->ed<y.ed;}
}e[10010];

inline void pushup(int k){t[k].mi=min(t[ls].mi,t[rs].mi);}

void build(int k,int l,int r){
	if(l==r){t[k].mi=dp[l];return;}
	int mid=l+r>>1;
	ls=++tot,build(ls,l,mid);
	rs=++tot,build(rs,mid+1,r);
	pushup(k);
}

void modify(int k,int l,int r,int pos,int val){
	if(l==r){t[k].mi=min(t[k].mi,val);return;}
	int mid=l+r>>1;
	if(pos<=mid)modify(ls,l,mid,pos,val);
	else modify(rs,mid+1,r,pos,val);
	pushup(k);
}

int query(int k,int l,int r,int x,int y){
	if(l==x&&r==y)return t[k].mi;
	int mid=l+r>>1;
	if(y<=mid)return query(ls,l,mid,x,y);
	else if(x>mid)return query(rs,mid+1,r,x,y);
	else return min(query(ls,l,mid,x,mid),query(rs,mid+1,r,mid+1,y));
}

void read_and_parse(){
	memset(dp,0x3f,sizeof(dp));
	n=read(),st=read()+1,ed=read()+1;//偏移量 
	for(int i=1;i<=n;i++){
		scanf("%d%d%d",&e[i].st,&e[i].ed,&e[i].w);
		++e[i].st,++e[i].ed;	
	}
	sort(e+1,e+n+1);
	r_b=max(ed,e[n].ed),l_b=st-1;
	dp[st-1]=0;
	build(1,l_b,r_b);
}

void solve(){
	for(int i=1;i<=n;i++){
		int mi=query(1,l_b,r_b,e[i].st-1,e[i].ed-1);
		if(mi==inf)continue;
		dp[e[i].ed]=mi+e[i].w;
		modify(1,l_b,r_b,e[i].ed,dp[e[i].ed]);
	}
	ans=inf;
	for(int i=ed;i<=r_b;i++)ans=min(ans,dp[i]);
	if(ans==inf)puts("-1");
	else printf("%d\n",ans);
}

int main(){
	read_and_parse();
	solve();
	return 0;
}
posted @ 2018-11-30 01:26  shellpicker  阅读(418)  评论(0)    收藏  举报