Lysobacter溶杆菌属
溶杆菌属(学名:Lysobacter)为溶杆菌科的一个属。[1]该属的模式种为产酶溶杆菌(Lysobacter enzymogenes)
1、NEW Bing 的回答
Lysobacter是一种革兰氏阴性的细菌属,属于拟杆菌门,广泛分布在土壤、水体和植物根际中。Lysobacter对植物有以下几种作用:
- 抑制植物病原菌。Lysobacter能够产生一些抗菌物质,如抗生素、细菌素、酚类化合物等,这些物质能够抑制或杀死一些植物病原菌,如青枯病菌、软腐病菌、立枯丝核菌等,从而提高植物的抗病性12。例如,Lysobacter enzymogenes C3能够抑制玉米青枯病的发生3。
- 促进植物生长。Lysobacter能够产生一些激素和代谢物,如吲哚乙酸、葡萄糖酸、葡萄糖胺等,这些物质能够刺激植物的根系发育,增加植物的生物量和产量。例如,Lysobacter capsici AZ78能够促进番茄和辣椒的生长。
- 降解有机污染物。Lysobacter能够利用多种有机污染物作为碳源和能源,如多环芳烃、农药、染料等,从而减少这些物质对植物和环境的危害12。例如,Lysobacter sp. A03能够降解土壤中的三氯甲烷。
综上所述,Lysobacter是一种对植物有益的根际微生物,它能够抑制植物病原菌、促进植物生长和降解有机污染物。
2、Chat GPT的回答
Lysobacter 是一类革兰氏阴性细菌,它们在根际微生物群落中扮演着重要的角色,通常被认为对植物具有积极的作用。以下是 Lysobacter 在植物根际中可能发挥的一些作用:
-
生物保护作用:Lysobacter 细菌通常被称为生物防治代理,因为它们能够分泌一系列抗生素和抑制植物病原体生长的化合物。它们可以帮助保护植物免受根际病害的侵害,提高植物的健康和产量。
-
分解有机物:一些 Lysobacter 物种具有分解有机物的能力,这有助于改善土壤质地,并促进有机物的分解和循环,提供植物所需的养分。
-
氮循环:Lysobacter 细菌可以参与土壤中的氮循环,包括氮的硝化和反硝化过程。这有助于提供植物所需的氮源,并维持土壤中氮的有效循环。
-
抑制植物病害:除了抑制根际病原体外,一些 Lysobacter 物种还可以抑制土壤中的其他植物病害,如真菌和细菌性病害。
-
生长促进:Lysobacter 细菌可以产生生长促进物质,如植物生长激素,有助于提高植物的生长速度和健康状况。
需要注意的是,Lysobacter 物种的具体功能和对植物的影响可能因物种和环境条件而异。因此,在研究中,通常需要考虑具体的 Lysobacter 物种和与其相互作用的植物种类,以更深入地了解其在特定生态系统中的角色。
3、The rhizosphere signature on the cell motility, biofilm formation and secondary metabolite production of a plant-associated Lysobacter strain
Lysobacter spp. are common bacterial inhabitants of the rhizosphere of diverse plant species. However, the
impact of the rhizosphere conditions on their physiology is still relatively understudied. To provide clues on the
behaviour of Lysobacter spp. in this ecological niche, we investigated the physiology of L. capsici AZ78 (AZ78), a
biocontrol strain isolated from tobacco rhizosphere, on a common synthetic growth medium (LBA) and on a
growth medium containing components of the plant rhizosphere (RMA). The presence of a halo surrounding the
AZ78 colony on RMA was a first visible effect related to differences in growth medium composition and it
corresponded to the formation of a large outer ring. The lower quantity of nutrients available in RMA as
compared with LBA was associated to a higher expression of a gene encoding cAMP-receptor-like protein (Clp),
responsible for cell motility and biofilm formation regulation. AZ78 cells on RMA were motile, equipped with
cell surface appendages and organised in small groups embedded in a dense layer of fibrils. Metabolic profiling
by mass spectrometry imaging revealed increased diversity of analytes produced by AZ78 on RMA as compared
with LBA. In particular, putative cyclic lipodepsipeptides, polycyclic tetramate macrolactams, cyclic macro-
lactams and other putative secondary metabolites with antibiotic activity were identified. Overall, the results
obtained in this study shed a light on AZ78 potential to thrive in the rhizosphere by its ability to move, form
biofilm and release secondary metabolites.
溶杆菌属是多种植物根际常见的细菌居民。然而,根际条件对其生理影响的研究相对较少。为了研究Lysobacter spp.在这一生态位上的行为,我们研究了从烟草根际分离的生防菌辣椒L.辣椒AZ78 (AZ78)在普通合成生长介质(LBA)和含有植物根际成分(RMA)的生长介质上的生理特性。在RMA上,围绕AZ78菌落的光环是与生长介质成分差异有关的第一个可见效应,它对应于一个大外圈的形成。与LBA相比,RMA中可用营养物质的数量更少,与编码camp受体样蛋白(Clp)的基因表达更高有关,Clp负责细胞运动和生物膜形成的调节。RMA上的AZ78细胞具有运动性,具有细胞表面的附属物,并以小群体的形式组织在致密的纤维层中。通过质谱成像分析发现,与LBA相比,AZ78在RMA上产生的分析物的多样性增加。特别是,确定了推定的环脂肽、多环四聚乳酸大内酰胺、环大内酰胺和其他推定的具有抗生素活性的次级代谢产物。总之,本研究的结果揭示了AZ78在根际中通过移动、形成生物膜和释放次生代谢产物的潜力。
4、Diversity and Activity of Lysobacter Species from Disease Suppressive Soils
The genus Lysobacter includes several species that produce a range of extracellular enzymes and other metabolites with activity against bacteria, fungi, oomycetes, and nematodes. Lysobacter species were found to be more abundant in soil suppressive against the fungal root pathogen Rhizoctonia solani, but their actual role in disease suppression is still unclear. Here, the antifungal and plant growth-promoting activities of 18 Lysobacter strains, including 11 strains from Rhizoctonia-suppressive soils, were studied both in vitro and in vivo. Based on 16S rRNA sequencing, the Lysobacter strains from the Rhizoctonia-suppressive soil belonged to the four species Lysobacter antibioticus, Lysobacter capsici, Lysobacter enzymogenes, and Lysobacter gummosus. Most strains showed strong in vitro activity against R. solani and several other pathogens, including Pythium ultimum, Aspergillus niger, Fusarium oxysporum, and Xanthomonas campestris. When the Lysobacter strains were introduced into soil, however, no significant and consistent suppression of R. solani damping-off disease of sugar beet and cauliflower was observed. Subsequent bioassays further revealed that none of the Lysobacter strains was able to promote growth of sugar beet, cauliflower, onion, and Arabidopsis thaliana, either directly or via volatile compounds. The lack of in vivo activity is most likely attributed to poor colonization of the rhizosphere by the introduced Lysobacter strains. In conclusion, our results demonstrated that Lysobacter species have strong antagonistic activities against a range of pathogens, making them an important source for putative new enzymes and antimicrobial compounds. However, their potential role in R. solani disease suppressive soil could not be confirmed. In-depth omics'–based analyses will be needed to shed more light on the potential contribution of Lysobacter species to the collective activities of microbial consortia in disease suppressive soils.
Lysobacter属包括几种能够产生一系列对细菌、真菌、卵菌和线虫具有活性的细胞外酶和其他代谢物的物种。在对抑制根际真菌病原体Rhizoctonia solani的土壤中,Lysobacter物种更加丰富,但它们在疾病抑制中的实际作用仍不清楚。在这项研究中,对18株Lysobacter菌株的抗真菌和促进植物生长的活性进行了室内外研究,其中包括来自抑制Rhizoctonia的土壤的11株菌株。基于16S rRNA测序,来自Rhizoctonia抑制土壤的Lysobacter菌株属于四个物种:Lysobacter antibioticus、Lysobacter capsici、Lysobacter enzymogenes和Lysobacter gummosus。大多数菌株在体外对R. solani和其他一些病原体,包括Pythium ultimum、Aspergillus niger、Fusarium oxysporum和Xanthomonas campestris,表现出强烈的活性。然而,当引入Lysobacter菌株到土壤中时,并没有观察到对甜菜和花椰菜的R. solani幼苗病有显著和一致的抑制作用。随后的生物测定进一步揭示,这些Lysobacter菌株无法直接或通过挥发性化合物促进甜菜、花椰菜、洋葱和拟南芥的生长。缺乏体内活性很可能是因为引入的Lysobacter菌株在根际的定殖能力较差。总之,我们的结果表明Lysobacter物种对一系列病原体具有强烈的拮抗活性,使它们成为潜在新酶和抗微生物化合物的重要来源。然而,它们在抑制R. solani疾病的土壤中的潜在作用无法得到确认。需要进行深入的组学分析以更全面地了解Lysobacter物种对抑制疾病的土壤中微生物群落的共同活动的潜在贡献。
5、Seed coat treatment by plant‑growth‑promoting rhizobacteria Lysobacter antibioticus 13–6 enhances maize yield and changes rhizosphere bacterial communities
The plant rhizosphere is a major habitat for diverse microorganisms because of its heterogeneous microenvironment. It is
well known that an imbalance in rhizosphere microorganisms has direct and indirect effects on soil fertility and plant health.
In this study, we investigated the impact of Lysobacter antibioticus 13–6 seed coat treatment on the soil physicochemical
properties, plant growth, and bacterial community composition of maize plants in both in vivo and in vitro experiments, using
high-throughput amplicon sequencing of 16S rRNA. Under in vitro conditions, we determined that L. antibioticus 13–6 has
the ability to solubilize P, hydrolyze cellulose, and synthesize indole acetic acid. Furthermore, under in vivo conditions, L.
antibioticus 13–6 significantly improved the soil physicochemical properties and enhanced the root length, stalk height, dry
weight of root and stalk, grain yield, and chlorophyll contents by successful colonization in the rhizosphere of maize plants.
The results of high-throughput amplicon sequencing of 16S rRNA demonstrated that L. antibioticus 13–6 significantly
changed the diversity and composition of the rhizosphere bacterial communities. The relative abundance of Gammaproteo-
bacteria, Gemmatimonadetes, and Bacteroidetes at the phylum level and Streptomyces, Lysobacter, and Nitrospira at the
genus level significantly increased in the rhizosphere of L. antibioticus 13–6 seed coat-treated plants. Co-occurrence networks
analysis revealed that the rhizosphere of L. antibioticus 13–6 seed coat-treated plants had fewer negative correlations and less
competition for resources among bacterial communities. Genome analysis of L. antibioticus 13–6 revealed that the genome
of L. antibioticus 13–6 encodes genes related to indole acetic acid synthesis, chitinase decomposition, and P solubilization,
making it one of the most potent plant growth-promoting bacteria. Overall, this study demonstrated the potential of L. anti-
bioticus 13–6 as a promising seed coat bioagent for sustainable agriculture and to minimize the utilization of agrochemicals.
这项研究探讨了利用Lysobacter antibioticus 13-6对玉米植株的种子外壳进行处理对土壤理化性质、植物生长和细菌群落组成的影响,通过采用16S rRNA的高通量引物测序,在体内和体外实验中进行了研究。在体外条件下,研究发现L. antibioticus 13-6具有溶解磷、水解纤维素和合成吲哚乙酸的能力。此外,在体内条件下,L. antibioticus 13-6显著改善了土壤的理化性质,并通过在玉米植株的根际成功定居,提高了根长、茎高、根和茎的干重、谷物产量和叶绿素含量。16S rRNA高通量引物测序的结果表明,L. antibioticus 13-6显著改变了根际细菌群落的多样性和组成。在门水平上,Gammaproteobacteria、Gemmatimonadetes和Bacteroidetes的相对丰度显著增加,而在属水平上,Streptomyces、Lysobacter和Nitrospira的相对丰度在L. antibioticus 13-6处理的根际中也显著增加。共存网络分析显示,在L. antibioticus 13-6处理的根际中,细菌群落之间的负相关较少,资源竞争也较少。L. antibioticus 13-6的基因组分析显示,其基因组编码了与吲哚乙酸合成、几丁质酶降解和磷溶解相关的基因,使其成为最强大的植物生长促进细菌之一。总的来说,这项研究展示了L. antibioticus 13-6作为一种有望用于可持续农业的种子外壳生物剂,以减少农药的使用。