一、题目要求
题目(1):最大连续子数组和(最大子段和)
(1)问题: 给定n个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n。例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。
(2)代码托管地址:https://dev.tencent.com/u/wyd76/p/zuoye/git/tree/master
代码如下:
package zuoye3;
public class zuoye {
public int MaxSubsequenceSum(int A[], int n)
{
int tempSum = 0;
int maxSum = 0;
for (int j = 0;j < n;j++)
{
tempSum = (tempSum + A[j]) > A[j] ? (tempSum + A[j]) : A[j];
if (tempSum > maxSum)
maxSum = tempSum;
}
return maxSum;
}
}
(3)代码分析:只进行一次for循环,用tempSum接收前j项和第j项最大值,然后进入判断语句,比较得到的新的最大值与之前的最大值,更新maxSum的值。
二、用条件组合覆盖设计测试用例
(1)tempSum + A[j] > A[j]并且更新后tempSum > maxSum
(2)tempSum + A[j] > A[j]并且更新后tempSum <= maxSum
(3)tempSum + A[j] <= A[j]并且更新后tempSum > maxSum
(4)tempSum + A[j] <= A[j]并且更新后tempSum <= maxSum
测试用例1:a[ ] = { 1, -2, 3, -4, 5},覆盖了(2)(3)
测试用例2:a[ ] = {-1, 2, -3, 4, 5},覆盖了(1)(4)
三、单元测试
(1)代码如下
package zuoye3;
import static org.junit.Assert.*;
import org.junit.Test;
public class zuoyeTest {
@Test
public void testMaxSubsequenceSum() {
int a[] = { 1, -2, 3, -4, 5};
assertEquals(5,new zuoye().MaxSubsequenceSum(a, 5));
}
@Test
public void testMaxSubsequenceSum2() {
int b[] = { -1, 2, -3, 4, 5};
assertEquals(9,new zuoye().MaxSubsequenceSum(b, 5));
}
}
(2)单元测试截图

四、程序运行截图
