使用Python绘制一个非常漂亮的李雅普诺夫指数,及其函数值

import numpy as np
import matplotlib.pyplot as plt
# show plots in notebook
# % matplotlib inline
result = []
lambdas = []
maps = []
# define range of r
rvalues = np.arange(0, 2, 0.01)
# loop through r
for r in rvalues:
x = 0.1
result = []
# iterate system 100 times
for t in range(100):
x = x + r - x**2
# calculate log of the absolute of the derivative
# 计算李雅普诺夫指数最关键的地方是,计算导数;
result.append(np.log(abs(1 - 2*x)))
# take average
lambdas.append(np.mean(result))
# for the map ignore first 100 iterations as transient time and iterate anew
for t in range(20):
x = x + r - x**2
maps.append(x)
fig = plt.figure(figsize=(10,7))
ax1 = fig.add_subplot(1,1,1)
xticks = np.linspace(0, 2, 4000)
# zero line
zero = [0]*4000
ax1.plot(xticks, zero, 'g-')
# plot map
ax1.plot(xticks, maps, 'r.',alpha = 0.3, label = 'Map')
ax1.set_xlabel('r')
# plot lyapunov
ax1.plot(rvalues, lambdas, 'b-', linewidth = 3, label = 'Lyapunov exponent')
ax1.grid('on')
ax1.set_xlabel('r')
ax1.legend(loc='best')
ax1.set_title('Map of x(t+1) = x(t) + r - x(t)^2 versus Lyapunov exponent')
plt.show()
代码解析:
1、xticks的长度是4000,200*20;
2、一共for循环了200个不同的r值(即模型参数);
3、每个r值计算出来一个李雅普诺夫指数;
4、每个r值计算出来20个不同的幅值,(如果振动比较小,这个20个值,很接近),如果进入混沌态,这20个值差异就很大,这说明此时整个系统对模型参数的微小变化非常敏感;
5、
浙公网安备 33010602011771号